Sport injuries are most often caused by overstraining. Injuries not only have an impact on the quality of life of athletes but can also incur high costs to sports clubs, due to the players’ absence. The main goal is to have a tool, which can advise trainers to optimise training per individual athlete in order to reach peak performace and reduce injuries.
MULTIFILE
A growing number of older patients undergo cardiac surgery. Some of these patients are at increased risk of post-operative functional decline, potentially leading to reduced quality of life and autonomy, and other negative health outcomes. First step in prevention is to identify patients at risk of functional decline. There are no current published tools available to predict functional decline following cardiac surgery. The objective was to validate the identification of seniors at risk—hospitalised patients (ISAR-HP), in older patients undergoing cardiac surgery. A multicenter cohort study was performed in cardiac surgery wards of two university hospitals with follow-up 3 months after hospital admission. Inclusion criteria: consecutive cardiac surgery patients, aged ≥65. Functional decline was defined as a decline of at least one point on the Katz ADL Index at follow-up compared with preadmission status.
Study designCross-sectional study.ObjectivesThe aims of this study were (1) to validate the two recently developed SCI-specific REE equations; (2) to develop new prediction equations to predict REE in a general population with SCI.SettingUniversity, the Netherlands.MethodsForty-eight community-dwelling men and women with SCI were recruited (age: 18–75 years, time since injury: ≥12 months). Body composition was measured by dual-energy X-ray absorptiometry (DXA), single-frequency bioelectrical impedance analysis (SF-BIA) and skinfold thickness. REE was measured by indirect calorimetry. Personal and lesion characteristics were collected. SCI-specific REE equations by Chun et al. [1] and by Nightingale and Gorgey [2] were validated. New equations for predicting REE were developed using multivariate regression analysis.ResultsPrediction equations by Chun et al. [1] and by Nightingale and Gorgey [2] significantly underestimated REE (Chun et al.: −11%; Nightingale and Gorgey: −11%). New equations were developed for predicting REE in the general population of people with SCI using FFM measured by SF-BIA and Goosey-Tolfrey et al. skinfold equation (R2 = 0.45–0.47; SEE = 200 kcal/day). The new equations showed proportional bias (p < 0.001) and wide limits of agreement (LoA, ±23%).ConclusionsPrediction equations by Chun et al. [1] and by Nightingale and Gorgey [2] significantly underestimated REE and showed large individual variations in a general population with SCI. The newly developed REE equations showed proportional bias and a wide LoA (±23%) which limit the predictive power and accuracy to predict REE in the general population with SCI. Alternative methods for measuring REE need to be investigated.
Organ-on-a-chip technology holds great promise to revolutionize pharmaceutical drug discovery and development which nowadays is a tremendously expensive and inefficient process. It will enable faster, cheaper, physiologically relevant, and more reliable (standardized) assays for biomedical science and drug testing. In particular, it is anticipated that organ-on-a-chip technology can substantially replace animal drug testing with using the by far better models of true human cells. Despite this great potential and progress in the field, the technology still lacks standardized protocols and robust chip devices, which are absolutely needed for this technology to bring the abovementioned potential to fruition. Of particular interest is heart-on-a-chip for drug and cardiotoxicity screening. There is presently no preclinical test system predicting the most important features of cardiac safety accurately and cost-effectively. The main goal of this project is to fabricate standardized, robust generic heart-on-a-chip demonstrator devices that will be validated and further optimized to generate new physiologically relevant models to study cardiotoxicity in vitro. To achieve this goal various aspects will be considered, including (i) the search for alternative chip materials to replace PDMS, (ii) inner chip surface modification and treatment (chemistry and topology), (iii) achieving 2D/3D cardiomyocyte (long term) cell culture and cellular alignment within the chip device, (iv) the possibility of integrating in-line sensors in the devices and, finally, (v) the overall chip design. The achieved standardized heart-on-a-chip technology will be adopted by pharmaceutical industry. This proposed project offers a unique opportunity for the Netherlands, and Twente in particular, which has relevant expertise, potential, and future perspective in this field as it hosts world-leading companies pioneering various core aspects of the technology that are relevant for organs-on-chips, combined with two world-leading research institutes within the University of Twente.
This project assists architects and engineers to validate their strategies and methods, respectively, toward a sustainable design practice. The aim is to develop prototype intelligent tools to forecast the carbon footprint of a building in the initial design process given the visual representations of space layout. The prediction of carbon emission (both embodied and operational) in the primary stages of architectural design, can have a long-lasting impact on the carbon footprint of a building. In the current design strategy, emission measures are considered only at the final phase of the design process once major parameters of space configuration such as volume, compactness, envelope, and materials are fixed. The emission assessment only at the final phase of the building design is due to the costly and inefficient interaction between the architect and the consultant. This proposal offers a method to automate the exchange between the designer and the engineer using a computer vision tool that reads the architectural drawings and estimates the carbon emission at each design iteration. The tool is directly used by the designer to track the effectiveness of every design choice on emission score. In turn, the engineering firm adapts the tool to calculate the emission for a future building directly from visual models such as shared Revit documents. The building realization is predominantly visual at the early design stages. Thus, computer vision is a promising technology to infer visual attributes, from architectural drawings, to calculate the carbon footprint of the building. The data collection for training and evaluation of the computer vision model and machine learning framework is the main challenge of the project. Our consortium provides the required resources and expertise to develop trustworthy data for predicting emission scores directly from architectural drawings.