First year undergraduate students at the Amsterdam University of Applied Sciences of two different departments, were asked to join self-reported surveys in two succeeding years. Along with background variables, effort and commitment, the surveys asked elements of engagement. The later was analysed with factor analysis. The data of the surveys together with the results of the exams from the first year, were investigated to find out if the mandatory study choice test (SCT) taken before entering the faculty, had any predictive effect on their success. Not only basic statistical analysis like correlation was performed, but also more advanced analysis such as structural equation modelling (SEM) was used to uncover the value of the SCT. After a model was built, the normed fit index (NFI), the comparative fit index (CFI), the Tucker-Lewis Index (TLI) and the root mean square error of approximation (RMSEA), were used to determine the fit of the model. By comparing the influence of the variables on the SCT, the benefits of the latter will be determined and ultimately enhance the knowledge about influences upon student success in higher education.
A transition of today’s energy system towards renewableresources, requires solutions to match renewable energy generationwith demand over time. These solutions include smartgrids, demand-side management and energy storage. Energycan be stored during moments of overproduction of renewableenergy and used from the storage during moments ofinsufficient production. Allocation in real time of generatedenergy towards controlled appliances or storage chargers, isdone by a smart control system which makes decisions basedon predictions (of upcoming generation and demand) andinformation of the actual condition of storages.
MULTIFILE
Rationale: Predictive equations for resting energy expenditure (REE) are used in the treatment of overweight and obesity, but the validity of these equations in overweight older adults is unknown. This study evaluates which predictive REE equation is the best alternative to indirect calorimetry in overweight older adults with and without diabetes. Methods: In total 273 adults aged ≥55 years with a BMI of ≥25 kg/m2 were included. REE (by indirect calorimetry), body weight, body height, age, gender, and fat-free and fat mass (from air-displacement plethysmography) were measured. The measured REE was used as a reference and compared with 28 existing REE equations. The accuracy of the equations was evaluated by the percentage accurate predictions (within 10% of REE measured), the root mean squared error (RMSE), and the mean percentage difference (bias) between predicted and measured REE. Subgroup analyses were performed for type 2 diabetics (T2D) and non-T2D. Results: Mean age was 64 ± (SD 6) years, 42% had T2D (n = 116), and mean BMI was 32.8 ± (SD 4.5) with range 25–54 kg/m2. The adjusted Harris & Benedict (1984) provided the highest percentage accurate predictions in all adults (70%) and in T2D (74%), and second best in non-T2D (67%). RMSE was 184, 175 and 191 kcal/day, and bias −1.2%, −1.5% and −1.0% for all adults, T2D and non-T2D, respectively. Conclusion: For Dutch overweight older adults with and without diabetes the adjusted Harris–Benedict (1984) predictive equation for REE seems to be the best alternative to indirect calorimetry.