Within the context of the Iliad project, the authors present technical challenges and the first results of having valid 3D scenes of (non-)existing offshore wind farms procedurally and automatically generated within either the Unreal or Unity game engine. The Iliad – Digital Twins of the Ocean project (EU Horizon 2020) aims to develop a ‘system of systems’ for creating cutting-edge digital twins of specific sea and ocean areas for diverse purposes related to their sustainable use and protection. One of the Iliad pilots addresses the topic of offshore floating wind farm construction or maintenance scenario testing and validation using the Unity 3D game engine. This work will speed up the development of these scenarios by procedurally and automatically creating the Unity 3D scene rather than manually (which is done at present). The main technical challenges concern the data-driven approach, in which a JSON configuration file drives the scene creation. The first results show a base wind farm running in Unreal 5.1. The final product will be able to handle environmental conditions, biological conditions, and specific human activities as input parameters.
DOCUMENT
Digital Twins of the Ocean (DTOs) are increasingly used in Maritime Spatial Planning (MSP), yet most remain limited to 2D representations and offer minimal stakeholder interactivity. These limitations reduce their effectiveness in capturing complex socio-ecological-technical dynamics and supporting exploratory what-if scenario planning in a 3D or 4D ocean space. This paper presents Immersive Ocean, a novel Virtual Twin platform developed within EU-ILIAD DTO initiative. Built with game engine and VR technologies, it supports procedural 3D world generation and interactive exploration in both desktop and immersive VR modes. Systematic performance validation demonstrated stable frame rates across both PC and VR platforms. Initial user evaluations (n=22) report high usability and engagement but also suggest areas for improvement in UI clarity and ecological model representation. These initial findings position Immersive Ocean as a promising Virtual Twin solution for an immersive, interactive, and data-integrated approach to MSP and ocean governance. Immersive Ocean is now being piloted with stakeholders in real-world MSP scenarios, including offshore wind farm planning.
DOCUMENT
The Hereon team has expressed interest in the use of the PO platform for the virtualization of the (hydro)dynamic behavior of offshore wind farms, in particular regarding turbidity around wind turbines. BUas has developed the Procedural Ocean (PO) platform. The platform uses procedural content generation (AI) for data-driven 3D virtualization of complex marine and maritime environments, with elements such as geo-environment (bathymery, etc.), geo-physics (weather conditions, waves), wind farms, aquaculture, shipping, ecology, and more. The virtual and immersive environment in the game engine Unreal supports advanced (game-like) user interaction for policy-oriented learning (marine spatial planning), ocean management, and decision making. We therefore propose a joint pilot Research and Development (R&D) project to explore, demonstrate and validate how a gridded dataset provided by Hereon can show the dynmics around wind farm monopiles. Furthermore, we can explore interactivity with the engineering and design of the turbine and the multiplication of the turbine design to compose a wind farm. Client: Hereon (The Helmholtz-Zentrum Hereon is a non-profit making research institute )