This paper addresses the procedural generation of levels for collaborative puzzle-platform games. To address this issue, we distinguish types of multiplayer interaction, focusing on two-player collaboration, and identify relevant game mechanics for a puzzle-platform game, addressing player movement, interaction with moving game objects, and physical interaction involving both players. These are further formalized as game design patterns. To test the feasibility of the approach, a level generator has been implemented based on a rule-based approach, using the existing tool called Ludoscope and a prototype game developed in the Unity game engine. The level generation procedure results in over 3.7 million possible playable level variations that can be generated automatically. Each of these levels encourages or even requires both players to engage in collaborative gameplay.
DOCUMENT
A level designer typically creates the levels of a game to cater for a certain set of objectives, or mission. But in procedural content generation, it is common to treat the creation of missions and the generation of levels as two separate concerns. This often leads to generic levels that allow for various missions. However, this also creates a generic impression for the player, because the potential for synergy between the objectives and the level is not utilised. Following up on the mission-space generation concept, as described by Dormans, we explore the possibilities of procedurally generating a level from a designer-made mission. We use a generative grammar to transform a mission into a level in a mixed-initiative design setting. We provide two case studies, dungeon levels for a rogue-like game, and platformer levels for a metroidvania game. The generators differ in the way they use the mission to generate the space, but are created with the same tool for content generation based on model transformations. We discuss the differences between the two generation processes and compare it with a parameterized approach.
LINK
ConceptThe goal of the worksop/tutorial is to introduce participants to the fundamentals of Procedural Content Generation (PCG) based on generative grammars, have them experience an example of such a system first-hand, and discuss the potential of this approach for various areas of procedural content generation for games. The principles and examples are based on Ludoscope, a software tool developed at the HvA by Dr. Joris Dormans, e.a.Duration: 2 hoursOverviewWe will use the first 30 minutes to explain the basics of how to use generative grammars to generate levels. The principles of these grammars and model transformations will be demonstrated by means of the level generation system of Spelunky, which we have modeled in Ludoscope.Spelunky focuses solely on the generation of geometry, but grammar-based systems can also be used to transform more abstract concepts of level design into level geometry. In the next hour, the participants will be able to get some hands-on experience with Ludoscope. The assignment will be to generate a Mario-like level based on specific requirements, adapted to the interests of workshop participants.Finally, we are interested in the participants’ evaluation of this approach to PCG. We will use the last 20 minutes to discuss alternative techniques, and possible applications to other areas of PCG, like asset creation, scripting and game generation.Workshop participants are asked to bring a (PC) laptop to work on during the workshop, and are encouraged to work in pairs.
LINK
The Hereon team has expressed interest in the use of the PO platform for the virtualization of the (hydro)dynamic behavior of offshore wind farms, in particular regarding turbidity around wind turbines. BUas has developed the Procedural Ocean (PO) platform. The platform uses procedural content generation (AI) for data-driven 3D virtualization of complex marine and maritime environments, with elements such as geo-environment (bathymery, etc.), geo-physics (weather conditions, waves), wind farms, aquaculture, shipping, ecology, and more. The virtual and immersive environment in the game engine Unreal supports advanced (game-like) user interaction for policy-oriented learning (marine spatial planning), ocean management, and decision making. We therefore propose a joint pilot Research and Development (R&D) project to explore, demonstrate and validate how a gridded dataset provided by Hereon can show the dynmics around wind farm monopiles. Furthermore, we can explore interactivity with the engineering and design of the turbine and the multiplication of the turbine design to compose a wind farm. Client: Hereon (The Helmholtz-Zentrum Hereon is a non-profit making research institute )