Sustainable consumption is interlinked with sustainable production. This chapter will introduce the closed-loop production, the circular economy, the steady state economy, and Cradle to Cradle (C2C) models of production. It will reflect on the key blockages to a meaningful sustainable production and how these could be overcome, particularly in the context of business education. The case study of the course for bachelor’s students within International Business Management Studies (IBMS) program at three Universities of Applied Science (vocational schools), and at Leiden University College in The Netherlands will be discussed. Student teams from these schools were given the assignment to make a business plan for a selected sponsor company in order to advise them how to make a transition from a linear to circular economy model. These case studies will illustrate the opportunities as well as potential pitfalls of the closed loop production models. The results of case studies’ analysis show that there was a mismatch between expectations of the sponsor companies and those of students on the one hand and a mismatch between theory and practice on the other hand. The former mismatch is explained by the fact that the sponsor companies have experienced a number of practical constraints when confronted with the need for the radical overhaul of established practices within the entire supply chain and students have rarely considered the financial viability of the "ideal scenarios" of linear-circular transitions. The latter mismatch applies to what students had learned about macro-economic theory and the application through micro-economic scenarios in small companies. https://www.springer.com/gp/book/9783319656076 LinkedIn: https://www.linkedin.com/in/helenkopnina/
MULTIFILE
The majority of Dutch peatlands are drained and used intensively as grasslands for dairy farming. This delivers high productivity but causes severe damage to the provisioning of ecosystem services. Peatland rewetting is the best way to reverse the damage, but high water levels do not fit with intensive dairy production. Paludiculture, defined as crop production under wet conditions, provides viable land use alternatives, but these alternatives are rarely compared to conventional drainage-based systems. Here, we compare ecosystem services of six theoretical production systems on peatland following a gradient of low, medium, and high water levels. This includes conventional and organic drainage-based dairy farming, low-input grasslands for grazing and mowing, and high-input paludiculture systems with reed and Sphagnum cultivation. For each production system, a theoretical 1 ha unit was designed using data from literature. Four aspects of ecosystem services were quantified and monetized, including agricultural productivity, reduction of greenhouse gas emissions, water storage, and biodiversity potential. Results show that drainage-based dairy farming systems only support high milk production without any of the other ecosystem services included, even with organic farming practices. Biomass producing paludiculture systems have high ecosystem services value, but do not lead to production values comparable to the present dairy farming. Capitalizing GHG reduction and other ecosystem services from peatland rewetting with carbon credits or other payment schemes would close this production and income gap. However, standard practice to monetize provision of ecosystem service is currently unavailable. Sustainable use of peatlands urges more fundamental changes in land and water management along with the financial and policy support required.
LINK
Due to the existing pressure for a more rational use of the water, many public managers and industries have to re-think/adapt their processes towards a more circular approach. Such pressure is even more critical in the Rio Doce region, Minas Gerais, due to the large environmental accident occurred in 2015. Cenibra (pulp mill) is an example of such industries due to the fact that it is situated in the river basin and that it has a water demanding process. The current proposal is meant as an academic and engineering study to propose possible solutions to decrease the total water consumption of the mill and, thus, decrease the total stress on the Rio Doce basin. The work will be divided in three working packages, namely: (i) evaluation (modelling) of the mill process and water balance (ii) application and operation of a pilot scale wastewater treatment plant (iii) analysis of the impacts caused by the improvement of the process. The second work package will also be conducted (in parallel) with a lab scale setup in The Netherlands to allow fast adjustments and broaden evaluation of the setup/process performance. The actions will focus on reducing the mill total water consumption in 20%.
Artificial Intelligence (AI) wordt realiteit. Slimme ICT-producten die diensten op maat leveren accelereren de digitalisering van de maatschappij. De grote innovaties van de komende jaren –zelfrijdende auto’s, spraakgestuurde virtuele assistenten, autodiagnose systemen, robots die autonoom complexe taken uitvoeren – zijn datagedreven en hebben een AI-component. Dit gaat de rol van professionals in alle domeinen, gezondheidzorg, bouwsector, financiële dienstverlening, maakindustrie, journalistiek, rechtspraak, etc., raken. ICT is niet meer volgend en ondersteunend (een ‘enabling’ technologie), maar de motor die de transformatie van de samenleving in gang zet. Grote bedrijven, overheidsinstanties, het MKB, en de vele startups in de Brainport regio zijn innovatieve datagedreven scenario’s volop aan het verkennen. Dit wordt nog eens versterkt door de democratisering van AI; machine learning en deep learning algoritmes zijn beschikbaar zowel in open source software als in Cloud oplossingen en zijn daarmee toegankelijk voor iedereen. Data science wordt ‘applied’ en verschuift van een PhD specialisme naar een HBO-vaardigheid. Het stadium waarin veel bedrijven nu verkeren is te omschrijven als: “Help, mijn AI-pilot is succesvol. Wat nu?” Deze aanvraag richt zich op het succesvol implementeren van AI binnen de context van softwareontwikkeling. De onderzoeksvraag van dit voorstel is: “Hoe kunnen we state-of-the-art data science methoden en technieken waardevol en verantwoord toepassen ten behoeve van deze slimme lerende ICT-producten?” De postdoc gaat fungeren als een linking pin tussen alle onderzoeksprojecten en opdrachten waarbij studenten ICT-producten met AI (machine learning, deep learning) ontwikkelen voor opdrachtgevers uit de praktijk. Door mee te kijken en mee te denken met de studenten kan de postdoc overzicht en inzicht creëren over alle cases heen. Als er overzicht is kan er daarna ook gestuurd worden op de uit te voeren cases om verschillende deelaspecten samen met de studenten te onderzoeken. Deliverables zijn rapporten, guidelines en frameworks voor praktijk en onderwijs, peer-reviewed artikelen en kennisdelingsevents.
This pre-study anticipates to a SIA call focussing on circular and bio-based economy in Brazil. It is linked to the Living Lab Brazil managed by Avans University of Applied Sciences. Although the dairy value chain will benefit from both circular and bio-based principles, this pre-study will be limited to circular systems. There is a vast potential for investment by the Dutch and Brazilian private sector in the dairy value chain in Minas Gerais (MG), Brazil. There is also ample room to improve production efficiency towards a more circular system. Notwithstanding the business opportunities in the Brazilian dairy sector, there are challenges in attracting and consolidating partnerships along the circular-based value chain. A better understanding of the demands, challenges and opportunities of the interested Dutch companies is highly relevant to develop sustainable circular-based dairy value chains. Therefore, the goal of our project proposal is the exploration of a potential Dutch business network that is interested to invest in the Brazilian circular dairy value chain, and an exploration of the potential business opportunities for the Dutch and Brazilian dairy sector. The consortium in our proposal is conformed as follows: (a) Van Hall Larenstein University of Applied Sciences (VHL). VHL is the leading knowledge institute. Vilentum University of Applied Sciences and the Federal University of Viçosa will participate through VHL. (b) Alta Genetics BV; (c) Groasis BV. To achieve our goal we focus on the following questions: What is the potential and what are the bottlenecks for the Dutch private sector (SME’s) to increase business opportunities in the dairy sector of MG? What are the business opportunities to develop and innovate circular-based dairy value chains through the Dutch and Brazilian private sector with dairy breeding and agro-silvopastoral farming as pilots? The outputs of this study will be: A list of potential Dutch private investors, both interested but hesitating and/or already successful. Basically we would like to identify “partners” and to build up a business network where we could match-make the Dutch companies with the Brazilian companies or clients; A pre-proposal including intentions for further collaboration; Three detailed reports with marketing and investment opportunities and/or research strategy in relation to circular-based economy in: general dairy chain, dairy breeding and agro-silvopastoral farming. The latter two topics must be considered as pilots for the entire dairy value chain.