Background & aims: In dietary practice, it is common to estimate protein requirements on actual bodyweight, but corrected bodyweight (in cases with BMI <20 kg/m2 and BMI ≥30 kg/m2) and fat free mass (FFM) are also used. Large differences on individual level are noticed in protein requirements using these different approaches. To continue this discussion, the answer is sought in a large population to the following question: Will choosing actual bodyweight, corrected bodyweight or FFM to calculate protein requirements result in clinically relevant differences? Methods: This retrospective database study, used data from healthy persons ≥55 years of age and in- and outpatients ≥18 years of age. FFM was measured by air displacement plethysmography technology or bioelectrical impedance analysis. Protein requirements were calculated as 1) 1.2 g (g) per kilogram (kg) actual bodyweight or 2) corrected bodyweight or 3) 1.5 g per kg FFM. To compare these three approaches, the approach in which protein requirement is based on FFM, was used as reference method. Bland–Altman plots with limits of agreement were used to determine differences, analyses were performed for both populations separately and stratified by BMI category and gender. Results: In total 2291 subjects were included. In the population with relatively healthy persons (n = 506, ≥55 years of age) mean weight is 86.5 ± 18.2 kg, FFM is 51 ± 12 kg and in the population with adult in- and outpatients (n = 1785, ≥18 years of age) mean weight is 72.5 ± 18.4 kg, FFM is 51 ± 11 kg. Clinically relevant differences were found in protein requirement between actual bodyweight and FFM in most of the participants with overweight, obesity or severe obesity (78–100%). Using corrected bodyweight, an overestimation in 48–92% of the participants with underweight, healthy weight and overweight is found. Only in the Amsterdam UMC population, protein requirement is underestimated when using the approach of corrected bodyweight in participants with severe obesity. Conclusion: The three approaches in estimation of protein requirement show large differences. In the majority of the population protein requirement based on FFM is lower compared to actual or corrected bodyweight. Correction of bodyweight reduces the differences, but remain unacceptably large. It is yet unknown which method is the best for estimation of protein requirement. Since differences vary by gender due to differences in body composition, it seems more accurate to estimate protein requirement based on FFM. Therefore, we would like to advocate for more frequent measurement of FFM to determine protein requirements, especially when a deviating body composition is to be expected, for instance in elderly and persons with overweight, obesity or severe obesity.
DOCUMENT
INTRODUCTION: Sufficient high quality dietary protein intake is required to prevent or treat sarcopenia in elderly people. Therefore, the intake of specific protein sources as well as their timing of intake are important to improve dietary protein intake in elderly people.OBJECTIVES: to assess the consumption of protein sources as well as the distribution of protein sources over the day in community-dwelling, frail and institutionalized elderly people.METHODS: Habitual dietary intake was evaluated using 2- and 3-day food records collected from various studies involving 739 community-dwelling, 321 frail and 219 institutionalized elderly people.RESULTS: Daily protein intake averaged 71 ± 18 g/day in community-dwelling, 71 ± 20 g/day in frail and 58 ± 16 g/day in institutionalized elderly people and accounted for 16% ± 3%, 16% ± 3% and 17% ± 3% of their energy intake, respectively. Dietary protein intake ranged from 10 to 12 g at breakfast, 15 to 23 g at lunch and 24 to 31 g at dinner contributing together over 80% of daily protein intake. The majority of dietary protein consumed originated from animal sources (≥60%) with meat and dairy as dominant sources. Thus, 40% of the protein intake in community-dwelling, 37% in frail and 29% in institutionalized elderly originated from plant based protein sources with bread as the principle source. Plant based proteins contributed for >50% of protein intake at breakfast and between 34% and 37% at lunch, with bread as the main source. During dinner, >70% of the protein intake originated from animal protein, with meat as the dominant source.CONCLUSION: Daily protein intake in these older populations is mainly (>80%) provided by the three main meals, with most protein consumed during dinner. More than 60% of daily protein intake consumed is of animal origin, with plant based protein sources representing nearly 40% of total protein consumed. During dinner, >70% of the protein intake originated from animal protein, while during breakfast and lunch a large proportion of protein is derived from plant based protein sources.
DOCUMENT
RATIONALE: Currently there is no consensus on protein requirements for obese older adults during weight loss. Here we explore the potential use of a new method for assessment of protein requirements based on changes in appendicular muscle mass during weight loss.METHODS: 60 obese older adults were subjected to 13 wk weight loss program, including hypocaloric diet and resistance training. Assessment of appendicular muscle mass was performed by DXA at baseline and after 13 wk challenge period, and the difference calculated as muscle mass change. Protein intake (g/kg body weight and g/kg fat free mass (FFM)) at 13wks was used as marker of protein intake during 13 wk period. 30 subjects received 10 times weekly 20 g protein supplement throughout the 13 week hypocaloric phase which is included in the calculation of total protein intake. Receiver operating characteristic (ROC) curve analysis was used to explore the optimal cutoff point for protein intake (g/kg) versus increase in appendicular muscle mass of more than 250 g over 13 wks (y/n). Subsequently, logistic regression analysis was performed for protein intake cutoff and muscle mass accretion, adjusted for sex, age, baseline BMI, and training compliance.RESULTS: ROC curve analysis provided a protein intake level per day of 1.2 g/kg bw and 1.9 g/kg FFM as cutoff point. Presence of muscle mass accretion during 13 wk challenge period was significantly higher with protein intake higher than 1.2 g/kg bw (OR 5.4, 95%CI 1.4-20.6, p = 0.013) or higher than 1.9 g/kg FFM (OR 8.1, 95%CI 2.1-31.9, p = 0.003). Subjects with a protein intake higher than 1.2 g/kg had significantly more often muscle mass accretion, compared to subjects with less protein intake (10/14 (72%) vs 15/46 (33%), p = 0.010). For 1.9 g/kg FFM this was 70% vs 28% (p = 0.002).CONCLUSION: This exploratory study provided a level of at least 1.2 g/kg body weight or 1.9 g/kg fat free mass as optimal daily protein intake for obese older adults under these challenged conditions of weight loss, based on muscle mass accretion during the challenge.TRIAL REGISTRATION: Dutch Trial Register under number NTR2751.
DOCUMENT
PURPOSE OF REVIEW: Currently, feeding the ICU patient is highly discussed. Energy feeding has been the topic of randomized studies, but protein feeding has not. Study results are contradictory on early feeding; however, little is known about early protein requirement. What is this protein requirement based on, therefore what are the fundamental determinants?
DOCUMENT
IntroductionTo stimulate early recognition and treatment of malnutrition, the Dutch Healthcare Inspectorate obliged all hospitals from 2008–2019 to report the number of malnourished patients with an adequate protein intake on the fourth day of hospital admission. In this article we present results over the past 11 years and discuss success factors and barriers for adequate treatment of malnourished patients in hospitals.MethodsThe annual reports of hospitals on the numbers of patients with a screening result ‘malnourished’ and an adequate protein intake on the fourth day of admission were analysed. Hospitals were categorized based on the percentage of malnourished patients with an adequate protein intake on the fourth day of admission as ‘poor’ (<40% of patients in a hospital achieve an adequate protein intake), ‘moderate’ 40–60% of patients in a hospital achieve an adequate protein intake), and ‘good’ (>60% of patients in a hospital achieve an adequate protein intake). To identify success factors and barriers for adequate treatment and registration of malnourished patients in hospitals, three focus groups were held in June and July 2020. Participants were dietitians and quality employees or nurses who were involved in data collection for malnutrition indicators in their hospitals.ResultsBetween 2008–2019, data were reported of 339,720 malnourished patients. The relative number of patients with adequate intake of protein on the fourth day in hospital ranges from 44%-53% between 2011 and 2019. Before 2013, the number of hospitals that reported data was too small to draw conclusions about results of treatment of malnutrition. Data from 2013 to 2019, show a decline in the number of hospitals with a ‘poor’ score. The number of hospitals with a moderate score increased between 2015 and 2019 and the number of hospitals with a good score remained more or less stable, except for 2018 where more hospitals reached a ‘good’ score. Sixteen professionals from ten different hospitals participated in the focus groups and revealed several determinants of adequate treatment of malnourished patients in hospitals such as awareness, feeling responsible and the need of clear instructions and good collaboration.ConclusionThis inventory of the protein intake of 339,720 hospital malnourished patients over 11 years shows that in one out of five Dutch hospitals >60% of malnourished patients had an adequate protein intake on the fourth day of admission. This shows that meeting protein requirements remains a difficult challenge. Early recognition of malnutrition, optimal multidisciplinary treatment and continuous evaluation is necessary to provide optimal nutritional care in the hospital and beyond.
DOCUMENT
Insight into protein requirements of intensive care unit (ICU) patients is urgently needed, but at present, it is unrealistic to define protein requirements for different diagnostic groups of critical illness or at different stages of illness. No large randomized controlled trials have randomized protein delivery, adequately addressed energy intake, and evaluated relevant clinical outcomes. As a pragmatic approach, experimental studies have focused on protein requirements of heterogeneous ICU patients. Data are scarce and the absolute value of protein requirements therefore is an approximation. Experimental studies indicate a protein requirement of >1.2 g/kg protein, which is supported by several outcome-based observational studies. Protein intake levels of up to 2.0-2.5 g/kg appear to be safe. A higher level of personalized treatment, within 1.2 and 2.5 g/kg, must involve identification of patients with low muscle protein mass that might benefit most from adequate protein nutrition in the ICU.
DOCUMENT
Under- and overfeeding in Intensive Care Units (ICUs) are linked to prolonged hospitalisation, increased morbidity, and elevated mortality. This study investigates whether ICU patients were optimally nourished according to the European Society for Clinical Nutrition and Metabolism (ESPEN) guidelines. Methods: A cohort of 158 COVID-19 patients requiring intensive care for severe respiratory failure, necessitating a nuanced approach to nutritional support, was analysed. Nutritional status was determined regarding kilocalories and protein using the Energy Expenditure derived from ventilator-measured VCO2 and the adjusted Weir equation, and data on intake through enteral feeding was used. The study included ventilated patients hospitalised for over five days without Extra Corporeal Life Support (ECLS) and receiving enteral nutrition. Associations between mortality and (i) calorie intake and (ii) protein intake were examined using Chi-Square statistics. Results: Conforming to the ESPEN guidelines, 45% of patients were malnourished, and 21% were over-nourished in kilocalories. Additionally, 61% were malnourished, and 16% were over-nourished in protein. The distribution between the groups of survivors and deceased relative to each of the groups well nourished, malnourished, and over-nourished was not statistically different (p = 0.21). The protein distribution among survivors and deceased groups was not statistically different (p = 0.67) regarding correct, insufficient, or excessive protein intake. Conclusions: Based on ESPEN guidelines, most ICU patients were inadequately nourished in kilocalories and protein. However, no significant survival differences were observed across groups with varying nutritional adequacy. Further research is recommended to explore the implications of nutritional interventions in critically ill patients.
DOCUMENT
Provision of adequate protein is crucial for optimizing outcomes in hospitalized patients. However, the methodologies upon which current recommendations are based have limitations, and little is known about true requirements in any clinical population. In this tutorial, we aim to give clinicians an understanding of how current protein recommendations were developed, an appreciation for the limitations of these recommendations, and an overview of more sophisticated approaches that can be applied to better define protein requirements. A broader perspective of the challenges and opportunities in determining clinical protein requirements can help clinicians think critically about the individualized nutrition care they provide to their patients with the goal of administering adequate protein to optimize outcomes.
DOCUMENT
Trends in eiwittransitie kunnen regionaal verschillen. In groeiende economieën verschuiven diëten wereldwijd van plantaardige naar dierlijke eiwitten. In veel economisch ontwikkelde regio's gebeurt echter het tegenovergestelde vanwege de zorg voor milieu en gezondheid. Wij onderzochten de relatie tussen vijf drijvende krachten en eiwittransitietrends zoals deze worden ervaren door jongvolwassenen in ontwikkelde regio's in China (Shanghai) en Nederland (Amsterdam, lees: de Randstad). De onderzochte drijvende krachten waren: milieubewustzijn; het beleid; cultuur; geld; en gezondheid. De gegevens zijn verkregen door 200 vragenlijsten te laten beantwoorden in beide regio's. De resultaten geven aan dat jongvolwassenen in Shanghai meer dierlijke eiwitten consumeren dan plantaardige eiwitten, maar dat er een verandering naar plantaardige eiwitten is ingezet, terwijl de trend van jongvolwassenen in Amsterdam om plantaardig eiwit te consumeren al verder ontwikkeld is. De rangschikking van de drijvende krachten in Shanghai was Geld> Milieubewustzijn> Gezondheid> Cultuur> Beleid, en in Amsterdam Gezondheid> Milieubewustzijn> Geld> Beleid> Cultuur. Eiwitkeuzes in de voeding van jongvolwassenen worden dus in Shanghai door andere drijvende krachten bepaald dan in Amsterdam
MULTIFILE
OBJECTIVE: Although it has been established that sufficient protein is required to maintain good nutritional status and support healthy aging, it is not clear if the pattern of protein consumption may also influence nutritional status, especially in institutionalized elderly who are at risk of malnutrition. Therefore, we aim to determine the association between protein intake distribution and nutritional status in institutionalized elderly people.DESIGN: Cross-sectional study among 481 institutionalized older adults.METHODS: Dietary data from 481 ambulant elderly people (68.8% female, mean age 87.5 ± 6.3 years) residing in 52 aged-care facilities in Victoria, Australia, were assessed over 2 days using plate waste analysis. Nutritional status was determined using the Mini-Nutritional Assessment tool and serum (n = 208) analyzed for albumin, hemoglobin, and IGF-1. Protein intake distribution was classified as: spread (even distribution across 3 meals, n = 65), pulse (most protein consumed in one meal, n = 72) or intermediate (n = 344). Regression analysis was used to investigate associations.RESULTS: Mean protein intakes were higher in the spread (60.5 ± 2.0 g/d) than intermediate group (56.0 ± 0.8 g/d, P = .037), and tended to be higher than those in the pulse group (55.9 ± 1.9 g/d, P = .097). Residents with an even distribution of protein intake achieved a higher level of the recommended daily intake for protein (96.2 ± 30.0%) than the intermediate (86.3 ± 26.2%, P = .008) and pulse (87.4 ± 30.5%, P = .06) groups, and also achieved a greater level of their estimated energy requirements (intermediate; P = .039, pulse; P = .001). Nutritional status (Mini-Nutritional Assessment score) did not differ between groups (pulse; 20.5 ± 4.5, intermediate; 21.0 ± 2.5, spread; 20.5 ± 3.5), nor did any other indices of nutritional status.CONCLUSIONS: Meeting protein requirements is required before protein distribution may influence nutritional status in institutionalized elderly. Achieving adequate protein and energy intakes is more likely when protein is distributed evenly throughout the day. Provision of high protein foods especially at breakfast, and in the evening, may support protein adequacy and healthy aging, especially for institutionalized elderly.
DOCUMENT