The design of healthcare facilities is a complex and dynamic process, which involves many stakeholders each with their own set of needs. In the context of healthcare facilities, this complexity exists at the intersection of technology and society because the very design of these buildings forces us to consider the technology–human interface directly in terms of living-space, ethics and social priorities. In order to grasp this complexity, current healthcare design models need mechanisms to help prioritize the needs of the stakeholders. Assistance in this process can be derived by incorporating elements of technology philosophy into existing design models. In this article, we develop and examine the Inclusive and Integrated Health Facilities Design model (In2Health Design model) and its foundations. This model brings together three existing approaches: (i) the International Classification of Functioning, Disability and Health, (ii) the Model of Integrated Building Design, and (iii) the ontology by Dooyeweerd. The model can be used to analyze the needs of the various stakeholders, in relationship to the required performances of a building as delivered by various building systems. The applicability of the In2Health Design model is illustrated by two case studies concerning (i) the evaluation of the indoor environment for older people with dementia and (ii) the design process of the redevelopment of an existing hospital for psychiatric patients.
Most violence risk assessment tools have been validated predominantly in males. In this multicenter study, the Historical, Clinical, Risk Management–20 (HCR-20), Historical, Clinical, Risk Management–20 Version 3 (HCR-20V3), Female Additional Manual (FAM), Short-Term Assessment of Risk and Treatability (START), Structured Assessment of Protective Factors for violence risk (SAPROF), and Psychopathy Checklist–Revised (PCL-R) were coded on file information of 78 female forensic psychiatric patients discharged between 1993 and 2012 with a mean follow-up period of 11.8 years from one of four Dutch forensic psychiatric hospitals. Notable was the high rate of mortality (17.9%) and readmission to psychiatric settings (11.5%) after discharge. Official reconviction data could be retrieved from the Ministry of Justice and Security for 71 women. Twenty-four women (33.8%) were reconvicted after discharge, including 13 for violent offenses (18.3%). Overall, predictive validity was moderate for all types of recidivism, but low for violence. The START Vulnerability scores, HCR-20V3, and FAM showed the highest predictive accuracy for all recidivism. With respect to violent recidivism, only the START Vulnerability scores and the Clinical scale of the HCR-20V3 demonstrated significant predictive accuracy.
MULTIFILE
Abstract Introduction: In 2017, the role of coordinating practitioner was introduced in the Netherlands in order to improve quality of care for patients who receive treatment in specialized mental health care. Psychiatric-mental health nurse practitioners (PMHNPs) can fulfil this role. Aim/Question: The aim was to obtain insight into how PMHNPs fulfil the coordinating practitioner role and what is needed to improve fulfilment of this role. Method: A survey among PMHNPs in the Netherlands was conducted between July-September 2018. In total, 381 PMHNP filled out the questionnaire; the response rate was 47.6%. Descriptive analyses were performed using SPSS 22® (IBM). Results: 92% Of the PMHNPs fulfilled the coordinating practitioner role and were generally satisfied with their role performance. The following conditions were formulated to improve this role: 1) recognition and trust in the expertise of PMHNPs, 2) a clear description of their role as coordinating practitioner, 3) strengthening multidisciplinary collaboration, and 4) sufficient training budget and opportunities. Discussion: In Dutch mental health care, PMHNPs have strengthened their position as coordinating practitioner in a short period of time. Follow-up research should be conducted to obtain further insights into elements that contribute to an optimal role as coordinating practitioner. Implications for Practice: Having PMHNPs act as coordinating practitioners can contribute to solving the challenges in mental health care regarding coordination of care and effective multidisciplinary collaboration.
Huntington’s disease (HD) and various spinocerebellar ataxias (SCA) are autosomal dominantly inherited neurodegenerative disorders caused by a CAG repeat expansion in the disease-related gene1. The impact of HD and SCA on families and individuals is enormous and far reaching, as patients typically display first symptoms during midlife. HD is characterized by unwanted choreatic movements, behavioral and psychiatric disturbances and dementia. SCAs are mainly characterized by ataxia but also other symptoms including cognitive deficits, similarly affecting quality of life and leading to disability. These problems worsen as the disease progresses and affected individuals are no longer able to work, drive, or care for themselves. It places an enormous burden on their family and caregivers, and patients will require intensive nursing home care when disease progresses, and lifespan is reduced. Although the clinical and pathological phenotypes are distinct for each CAG repeat expansion disorder, it is thought that similar molecular mechanisms underlie the effect of expanded CAG repeats in different genes. The predicted Age of Onset (AO) for both HD, SCA1 and SCA3 (and 5 other CAG-repeat diseases) is based on the polyQ expansion, but the CAG/polyQ determines the AO only for 50% (see figure below). A large variety on AO is observed, especially for the most common range between 40 and 50 repeats11,12. Large differences in onset, especially in the range 40-50 CAGs not only imply that current individual predictions for AO are imprecise (affecting important life decisions that patients need to make and also hampering assessment of potential onset-delaying intervention) but also do offer optimism that (patient-related) factors exist that can delay the onset of disease.To address both items, we need to generate a better model, based on patient-derived cells that generates parameters that not only mirror the CAG-repeat length dependency of these diseases, but that also better predicts inter-patient variations in disease susceptibility and effectiveness of interventions. Hereto, we will use a staggered project design as explained in 5.1, in which we first will determine which cellular and molecular determinants (referred to as landscapes) in isogenic iPSC models are associated with increased CAG repeat lengths using deep-learning algorithms (DLA) (WP1). Hereto, we will use a well characterized control cell line in which we modify the CAG repeat length in the endogenous ataxin-1, Ataxin-3 and Huntingtin gene from wildtype Q repeats to intermediate to adult onset and juvenile polyQ repeats. We will next expand the model with cells from the 3 (SCA1, SCA3, and HD) existing and new cohorts of early-onset, adult-onset and late-onset/intermediate repeat patients for which, besides accurate AO information, also clinical parameters (MRI scans, liquor markers etc) will be (made) available. This will be used for validation and to fine-tune the molecular landscapes (again using DLA) towards the best prediction of individual patient related clinical markers and AO (WP3). The same models and (most relevant) landscapes will also be used for evaluations of novel mutant protein lowering strategies as will emerge from WP4.This overall development process of landscape prediction is an iterative process that involves (a) data processing (WP5) (b) unsupervised data exploration and dimensionality reduction to find patterns in data and create “labels” for similarity and (c) development of data supervised Deep Learning (DL) models for landscape prediction based on the labels from previous step. Each iteration starts with data that is generated and deployed according to FAIR principles, and the developed deep learning system will be instrumental to connect these WPs. Insights in algorithm sensitivity from the predictive models will form the basis for discussion with field experts on the distinction and phenotypic consequences. While full development of accurate diagnostics might go beyond the timespan of the 5 year project, ideally our final landscapes can be used for new genetic counselling: when somebody is positive for the gene, can we use his/her cells, feed it into the generated cell-based model and better predict the AO and severity? While this will answer questions from clinicians and patient communities, it will also generate new ones, which is why we will study the ethical implications of such improved diagnostics in advance (WP6).