Dit paper is het eindproduct van leerarrangement 1 (Zin in Leren) van de HBO masteropleiding Leren en Innoveren. Het is een literatuurstudie naar blended learning en hoe blended learning kan bijdragen aan een beter leerresultaat van de student.
DOCUMENT
Background and aim – In this study, it is pre-supposed that the indoor environmental conditions of classrooms can contribute to the quality of the educational process. Thermal, acoustic and visual conditions and indoor air quality (IAQ) may be extremely supportive in order to support the in-class tasks of teachers and students. This study explores the influence of these conditions on the perceived comfort and quality of learning of students in higher education. Methodology – In a case study design, the actual IEQ of 34 classrooms which are spread over four school buildings in North Netherlands and 276 related student perceptions were collected. The measurements consisted of in situ physical measurements. At the same moment the perceived indoor environmental quality (PIEQ) and the perceived quality of learning (PQL) of students were measured with a questionnaire. Results – Observed are high carbon dioxide concentrations and high background noise levels. A relation was observed between perceived acoustic and visual conditions, IAQ, and the PQL indicating that a poor IEQ affects the PQL. A linear regression analyses showed that in this study the perceived impact on the quality of learning was mainly caused by perceived acoustic comfort. Originality – With the applied innovative measuring instrument it is possible to measure both the actual IEQ as well as the PIEQ and PQL. This method can also be used to assess a reference and intervention condition. Practical or social implications – The applied measuring instrument provides school management with information about the effectiveness of improved IEQ and students’ satisfaction, which can be the basis for further improvement.
LINK
Lifelong learning is necessary for nurses and caregivers to provide good, person-centred care. To facilitate such learning and embed it into regular working processes, learning communities of practice are considered promising. However, there is little insight into how learning networks contribute to learning exactly and what factors of success can be found. The study is part of a ZonMw-funded research project ‘LeerSaam Noord’ in the Netherlands, which aims to strengthen the professionalization of the nursing workforce and promote person-centred care. We describe what learning in learning communities looks like in four different healthcare contexts during the start-up phase of the research project. A thematic analysis of eleven patient case-discussions in these learning communities took place. In addition, quantitative measurements on learning climate, reciprocity behavior, and perceptions of professional attitude and autonomy, were used to underpin findings. Reflective questioning and discussing professional dilemma's i.e. patient cases in which conflicting interests between the patient and the professional emerge, are of importance for successful learning.
MULTIFILE
As the Dutch population is aging, the field of music-in-healthcare keeps expanding. Healthcare, institutionally and at home, is multiprofessional and demands interprofessional collaboration. Musicians are sought-after collaborators in social and healthcare fields, yet lesser-known agents of this multiprofessional group. Although live music supports social-emotional wellbeing and vitality, and nurtures compassionate care delivery, interprofessional collaboration between musicians, social work, and healthcare professionals remains marginal. This limits optimising and integrating music-making in the care. A significant part of this problem is a lack of collaborative transdisciplinary education for music, social, and healthcare students that deep-dives into the development of interprofessional skills. To meet the growing demand for musical collaborations by particularly elderly care organisations, and to innovate musical contributions to the quality of social and healthcare in Northern Netherlands, a transdisciplinary education for music, physiotherapy, and social work studies is needed. This project aims to equip multiprofessional student groups of Hanze with interprofessional skills through co-creative transdisciplinary learning aimed at innovating and improving musical collaborative approaches for working with vulnerable, often older people. The education builds upon experiential learning in Learning LABs, and collaborative project work in real-life care settings, supported by transdisciplinary community forming.The expected outcomes include a new concept of a transdisciplinary education for HBO-curricula, concrete building blocks for a transdisciplinary arts-in-health minor study, innovative student-led approaches for supporting the care and wellbeing of (older) vulnerable people, enhanced integration of musicians in interprofessional care teams, and new interprofessional structures for educational collaboration between music, social work and healthcare faculties.
Deploying robots from indoor to outdoor environments (vise versa) with stable and accurate localization is very important for companies to secure the utilization in industrial applications such as delivering harvested fruits from plantations, deploying/docking, navigating under solar panels, passing through tunnels/underpasses and parking in garages. This is because of the sudden changes in operational conditions such as receiving high/low-quality satellite signals, changing field of view, dealing with lighting conditions and addressing different velocities. We observed these limitations especially in indoor-outdoor transitions after conducting different projects with companies and obtaining inaccurate localization using individual Robotics Operating Systems (ROS2) modules. As there are rare commercial solutions for IO-transitions, AlFusIOn is a ROS2-based framework aims to fuse different sensing and data-interpretation techniques (LiDAR, Camera, IMU, GNSS-RTK, Wheel Odometry, Visual Odometry) to guarantee the redundancy and accuracy of the localization system. Moreover, maps will be integrated to robustify the performance and ensure safety by providing geometrical information about the transitioning structures. Furthermore, deep learning will be utilized to understand the operational conditions by labeling indoor and outdoor areas. This information will be encoded in maps to provide robots with expected operational conditions in advance and beyond the current sensing state. Accordingly, this self-awareness capability will be incorporated into the fusion process to control and switch between the localization techniques to achieve accurate and smooth IO-transitions, e.g., GNSS-RTK will be deactivated during the transition. As an urgent and unique demand to have an accurate and continuous IO-transition towards fully autonomous navigation/transportation, Saxion University and the proposal’s partners are determined to design a commercial and modular industrial-based localization system with robust performance, self-awareness about the localization capabilities and less human interference. Furthermore, AlFusIOn will intensively collaborate with MAPS (a RAAKPRO proposed by HAN University) to achieve accurate localization in outdoor environments.
The pressure on the European health care system is increasing considerably: more elderly people and patients with chronic diseases in need of (rehabilitation) care, a diminishing work force and health care costs continuing to rise. Several measures to counteract this are proposed, such as reduction of the length of stay in hospitals or rehabilitation centres by improving interprofessional and person-centred collaboration between health and social care professionals. Although there is a lot of attention for interprofessional education and collaborative practice (IPECP), the consortium senses a gap between competence levels of future professionals and the levels needed in rehabilitation practice. Therefore, the transfer from tertiary education to practice concerning IPECP in rehabilitation is the central theme of the project. Regional bonds between higher education institutions and rehabilitation centres will be strengthened in order to align IPECP. On the one hand we deliver a set of basic and advanced modules on functioning according to the WHO’s International Classification of Functioning, Disability and Health and a set of (assessment) tools on interprofessional skills training. Also, applications of this theory in promising approaches, both in education and in rehabilitation practice, are regionally being piloted and adapted for use in other regions. Field visits by professionals from practice to exchange experiences is included in this work package. We aim to deliver a range of learning materials, from modules on theory to guidelines on how to set up and run a student-run interprofessional learning ward in a rehabilitation centre. All tested outputs will be published on the INPRO-website and made available to be implemented in the core curricula in tertiary education and for lifelong learning in health care practice. This will ultimately contribute to improve functioning and health outcomes and quality of life of patients in rehabilitation centres and beyond.