The goal of this study was therefore to test the idea that computationally analysing the Fontys National Student Surveys (NSS) open answers using a selection of standard text mining methods (Manning & Schütze 1999) will increase the value of these answers for educational quality assurance. It is expected that human effort and time of analysis will decrease significally. The text data (in Dutch) of several years of Fontys National Student Surveys (2013-2018) was provided to Fontys students of the minor Applied Data Science. The results of the analysis were to include topic and sentiment modelling across multiple years of survey data. Comparing multiple years was necessary to capture and visualize any trends that a human investigator may have missed while analysing the data by hand. During data cleaning all stop words and punctuation were removed, all text was brought to a lower case, names and inappropriate language – such as swear words – were deleted. About 80% of 24.000 records were manually labelled with sentiment; reminder was used for algorithms’ validation. In the following step a machine learning analysis steps: training, testing, outcomes analysis and visualisation, for a better text comprehension, were executed. Students aimed to improve classification accuracy by applying multiple sentiment analysis algorithms and topics modelling methods. The models were chosen arbitrarily, with a preference for a low complexity of a model. For reproducibility of our study open source tooling was used. One of these tools was based on Latent Dirichlet allocation (LDA). LDA is a generative statistical model that allows sets of observations to be explained by unobserved groups that explain why some parts of the data are similar (Blei, Ng & Jordan, 2003). For topic modelling the Gensim (Řehůřek, 2011) method was used. Gensim is an open-source vector space modelling and topic modelling toolkit implemented in Python. In addition, we recognized the absence of pretrained models for Dutch language. To complete our prototype a simple user interface was created in Python. This final step integrated our automated text analysis with visualisations of sentiments and topics. Remarkably, all extracted topics are related to themes defined by the NSS. This indicates that in general students’ answers are related to topics of interest for educational institutions. The extracted list of the words related to the topic is also relevant to this topic. Despite the fact that most of the results require further human expert interpretation, it is indicative to conclude that the computational analysis of the texts from the open questions of the NSS contain information which enriches the results of standard quantitative analysis of the NSS.
Background: Recent studies suggest that ethnic minority students underperform in standardised assessments commonly used to evaluate their progress. This disparity seems to also hold for postgraduate medical students and GP trainees, and may affect the quality of primary health care, which requires an optimally diverse workforce. Aims: To address the following: 1) to determine to what extent ethnic minority GP trainees are more at risk of being assessed as underperforming than their majority peers; 2) to investigate whether established underperformance appears in specific competence areas; and 3) to explore first and second-generation ethnic minority trainees’ deviations. Design & setting: Quantitative retrospective cohort design in Dutch GP specialty training (start years: 2015–2017). Method: In 2020–2021, the authors evaluated files on assessed underperformance of 1700 GP trainees at seven Dutch GP specialty training institutes after excluding five opt-outs and 165 incomplete datasets (17.4% ethnic minority trainees). Underperformance was defined as the occurrence of the following, which was prompted by the training institute: 1) preliminary dropout; 2) extension of the educational pathway; and/or 3) mandatory coaching pathways. Statistics Netherlands (CBS) anonymised the files and added data about ethnic group. Thereafter, the authors performed logistic regression for potential underperformance analysis and χ2 tests for competence area analysis. Results: Ethnic minority GP trainees were more likely to face underperformance assessments than the majority group (odds ratio [OR] 2.41, 95% confidence interval [CI] = 1.67 to 3.49). Underperformance was not significantly nested in particular competence areas. First-generation ethnic minority trainees seemed more at risk than their second-generation peers. Conclusion: Ethnic minority GP trainees seem more at risk of facing educational barriers than the majority group. Additional qualitative research on underlying factors is essential.
The main goal of this study was to investigate if a computational analyses of text data from the National Student Survey (NSS) can add value to the existing, manual analysis. The results showed the computational analysis of the texts from the open questions of the NSS contain information which enriches the results of standard quantitative analysis of the NSS.
Due to societal developments, like the introduction of the ‘civil society’, policy stimulating longer living at home and the separation of housing and care, the housing situation of older citizens is a relevant and pressing issue for housing-, governance- and care organizations. The current situation of living with care already benefits from technological advancement. The wide application of technology especially in care homes brings the emergence of a new source of information that becomes invaluable in order to understand how the smart urban environment affects the health of older people. The goal of this proposal is to develop an approach for designing smart neighborhoods, in order to assist and engage older adults living there. This approach will be applied to a neighborhood in Aalst-Waalre which will be developed into a living lab. The research will involve: (1) Insight into social-spatial factors underlying a smart neighborhood; (2) Identifying governance and organizational context; (3) Identifying needs and preferences of the (future) inhabitant; (4) Matching needs & preferences to potential socio-techno-spatial solutions. A mixed methods approach fusing quantitative and qualitative methods towards understanding the impacts of smart environment will be investigated. After 12 months, employing several concepts of urban computing, such as pattern recognition and predictive modelling , using the focus groups from the different organizations as well as primary end-users, and exploring how physiological data can be embedded in data-driven strategies for the enhancement of active ageing in this neighborhood will result in design solutions and strategies for a more care-friendly neighborhood.
Receiving the first “Rijbewijs” is always an exciting moment for any teenager, but, this also comes with considerable risks. In the Netherlands, the fatality rate of young novice drivers is five times higher than that of drivers between the ages of 30 and 59 years. These risks are mainly because of age-related factors and lack of experience which manifests in inadequate higher-order skills required for hazard perception and successful interventions to react to risks on the road. Although risk assessment and driving attitude is included in the drivers’ training and examination process, the accident statistics show that it only has limited influence on the development factors such as attitudes, motivations, lifestyles, self-assessment and risk acceptance that play a significant role in post-licensing driving. This negatively impacts traffic safety. “How could novice drivers receive critical feedback on their driving behaviour and traffic safety? ” is, therefore, an important question. Due to major advancements in domains such as ICT, sensors, big data, and Artificial Intelligence (AI), in-vehicle data is being extensively used for monitoring driver behaviour, driving style identification and driver modelling. However, use of such techniques in pre-license driver training and assessment has not been extensively explored. EIDETIC aims at developing a novel approach by fusing multiple data sources such as in-vehicle sensors/data (to trace the vehicle trajectory), eye-tracking glasses (to monitor viewing behaviour) and cameras (to monitor the surroundings) for providing quantifiable and understandable feedback to novice drivers. Furthermore, this new knowledge could also support driving instructors and examiners in ensuring safe drivers. This project will also generate necessary knowledge that would serve as a foundation for facilitating the transition to the training and assessment for drivers of automated vehicles.