Growth conditions have been frequently studied in optimizing polyhydroxybutyrate (PHB) production, while few studies were performed to unravel the dynamic mixed microbial consortia (MMCs) in the process. In this study, the relationship between growth conditions (C/N ratios and pH) and the corresponding key-microbes were identified and monitored during PHB accumulation. The highest PHB level (70 wt% of dry cell mass) was obtained at pH 9, C/N 40, and acetic acid 10 g/L. Linking the dominant genera with the highest point of PHB accumulation, Thauera was the most prevalent species in all MMCs of pH 9, except when a C/N ratio of 1 was applied. Notably, dominant bacteria shifted at pH 7 (C/N 10) from Thauera (0 h) to Paracoccus, and subsequently to Alcaligenes following the process of PHB accumulation and consumption. Further understanding of the relationship between the structure of the microbial community and the performance will be beneficial for regulating and obtaining high PHB accumulation within an MMC. Our study illustrates the impact of C/N ratios and pH on microbial prevalence and PHB production levels using a mixed microbial starter culture. This knowledge will broaden industrial perspectives for regulating high PHB production and timely harvesting.
LINK
This report consists of two parts and describes the highlights of the investigations carried out in the Province of Groningen as part of the Right Project to understand the Regional Innovation Ecosystem in the region. The first part is focusses on the socio-economic and R&D profile (Part 1A) and a SWOT analysis on salient aspects related to Regional Innovation Ecosystems (Part 1B). The second part (Part 2) focuses on the SME innovation capacity and needs, and presents the highlights of 6 interviews with SMEs in the region. The RIGHT project, an Interreg North Sea Program, will contribute to territorial growth in the North Sea Region by connecting smart specialisation strategies to human capital and the skills of the workforce by defining existing and potential regional growth sectors and sub-sectors.
LINK
ObjectiveThis systematic review aims to reevaluate the role of minerals on muscle mass, muscle strength, physical performance, and the prevalence of sarcopenia in community-dwelling and institutionalized older adults.DesignSystematic review.Setting and ParticipantsIn March 2022, a systematic search was performed in PubMed, Scopus, and Web of Sciences using predefined search terms. Original studies on dietary mineral intake or mineral serum blood concentrations on muscle mass, muscle strength, and physical performance or the prevalence of sarcopenia in older adults (average age ≥65 years) were included.MethodsEligibility screening and data extraction was performed by 2 independent reviewers. Quality assessment was performed with the Effective Public Health Practice Project (EPHPP) Quality Assessment Tool for Quantitative Studies. Risk of bias was evaluated using the Risk Of Bias In Non-randomized Studies-of Exposure (ROBINS-E) tool.ResultsFrom the 15,622 identified articles, a total of 45 studies were included in the review, mainly being cross-sectional and observational studies. Moderate quality of evidence showed that selenium (n = 8) and magnesium (n = 7) were significantly associated with muscle mass, strength, and physical performance as well as the prevalence of sarcopenia. For calcium and zinc, no association could be found. For potassium, iron, sodium, and phosphorus, the association with sarcopenic outcomes remains unclear as not enough studies could be included or were nonconclusive (low quality of evidence).Conclusions and ImplicationsThis systematic review shows a potential role for selenium and magnesium on the prevention and treatment of sarcopenia in older adults. More randomized controlled trials are warranted to determine the impact of minerals on sarcopenia in older adults.
MULTIFILE