Good to see you! Publinova is the platform for practice-oriented research. Go on a voyage of discovery or search specifically for your area of interest. Do you have something that should not be missing on the platform? The platform is made by all of us, so help build it! Is something not working as you expected? Send your finding to support@publinova.nl.
When you log in, you can follow projects or parties you find interesting, save your favourites and edit your profile. Are you a researcher and we connected your university of applied sciences? Then you can link your products and your projects on Publinova to your profile.
Muziek kan een drager zijn van herinneringen en emoties. In onze jeugd en vroege volwassenheid ontwikkelen we onze persoonlijke muzieksmaak. Voor mensen met dementie, meestal 80-plussers, is dat ruim zestig jaar geleden. Voor hen is er nu een online muziekstation dat muziek uit die periode draait: Radio Remember.
OBJECTIVES: To compare low contrast detail (LCD) detectability and radiation dose for routine paediatric chest X-ray (CXR) imaging protocols among various hospitals.METHODS: CDRAD 2.0 phantom and medical grade polymethyl methacrylate (PMMA) slabs were used to simulate the chest region of four different paediatric age groups. Radiographic acquisitions were undertaken on 17 X-ray machines located in eight hospitals using their existing CXR protocols. LCD detectability represented by image quality figure inverse (IQF inv) was measured physically using the CDRAD analyser software. Incident air kerma (IAK) measurements were obtained using a solid-state dosimeter. RESULTS: The range of IQF inv, between and within the hospitals, was 1.40-4.44 and 1.52-2.18, respectively for neonates; 0.96-4.73 and 2.33-4.73 for a 1-year old; 0.87-1.81 and 0.98-1.46 for a 5-year old and 0.90-2.39 and 1.27-2.39 for a 10-year old. The range of IAK, between and within the hospitals, was 8.56-52.62 μGy and 21.79-52.62 μGy, respectively for neonates; 5.44-82.82 μGy and 36.78-82.82 μGy for a 1-year old; 10.97-59.22 μGy and 11.75-52.94 μGy for a 5-year old and 13.97-100.77 μGy and 35.72-100.77 μGy for a 10-year old. CONCLUSIONS: Results show considerable variation, between and within hospitals, in the LCD detectability and IAK. Further radiation dose optimisation for the four paediatric age groups, especially in hospitals /X-ray rooms with low LCD detectability and high IAK, are required.
INTRODUCTION: With the introduction of digital radiography, the feedback between image quality and over-exposure has been partly lost which in some cases has led to a steady increase in dose. Over the years the introduction of exposure index (EI) has been used to resolve this phenomenon referred to as 'dose creep'. Even though EI is often vendor specific it is always a related of the radiation exposure to the detector. Due to the nature of this relationship EI can also be used as a patient dose indicator, however this is not widely investigated in literature.METHODS: A total of 420 dose-area-product (DAP) and EI measurements were taken whilst varying kVp, mAs and body habitus on two different anthropomorphic phantoms (pelvis and chest). Using linear regression, the correlation between EI and DAP were examined. Additionally, two separate region of interest (ROI) placements/per phantom where examined in order to research any effect on EI.RESULTS: When dividing the data into subsets, a strong correlation between EI and DAP was shown with all R-squared values > 0.987. Comparison between the ROI placements showed a significant difference between EIs for both placements.CONCLUSION: This research shows a clear relationship between EI and radiation dose which is dependent on a wide variety of factors such as ROI placement, body habitus. In addition, pathology and manufacturer specific EI's are likely to be of influence as well.IMPLICATIONS FOR PRACTICE: The combination of DAP and EI might be used as a patient dose indicator. However, the influencing factors as mentioned in the conclusion should be considered and examined before implementation.
This review aims to identify strategies to optimise radiography practice using digital technologies, for full spine studies on paediatrics focusing particularly on methods used to diagnose and measure severity of spinal curvatures. The literature search was performed on different databases (PubMed, Google Scholar and ScienceDirect) and relevant websites (e.g., American College of Radiology and International Commission on Radiological Protection) to identify guidelines and recent studies focused on dose optimisation in paediatrics using digital technologies. Plain radiography was identified as the most accurate method. The American College of Radiology (ACR) and European Commission (EC) provided two guidelines that were identified as the most relevant to the subject. The ACR guidelines were updated in 2014; however these guidelines do not provide detailed guidance on technical exposure parameters. The EC guidelines are more complete but are dedicated to screen film systems. Other studies provided reviews on the several exposure parameters that should be included for optimisation, such as tube current, tube voltage and source-to-image distance; however, only explored few of these parameters and not all of them together. One publication explored all parameters together but this was for adults only. Due to lack of literature on exposure parameters for paediatrics, more research is required to guide and harmonise practice
Chest imaging plays a pivotal role in screening and monitoring patients, and various predictive artificial intelligence (AI) models have been developed in support of this. However, little is known about the effect of decreasing the radiation dose and, thus, image quality on AI performance. This study aims to design a low-dose simulation and evaluate the effect of this simulation on the performance of CNNs in plain chest radiography. Seven pathology labels and corresponding images from Medical Information Mart for Intensive Care datasets were used to train AI models at two spatial resolutions. These 14 models were tested using the original images, 50% and 75% low-dose simulations. We compared the area under the receiver operator characteristic (AUROC) of the original images and both simulations using DeLong testing. The average absolute change in AUROC related to simulated dose reduction for both resolutions was <0.005, and none exceeded a change of 0.014. Of the 28 test sets, 6 were significantly different. An assessment of predictions, performed through the splitting of the data by gender and patient positioning, showed a similar trend. The effect of simulated dose reductions on CNN performance, although significant in 6 of 28 cases, has minimal clinical impact. The effect of patient positioning exceeds that of dose reduction.
LINK
03/18/2025Introduction: Zygomatic fractures can be diagnosed with either computed tomography (CT) or direct digital radiography (DR). The aim of the present study was to assess the effect of CT dose reduction on the preference for facial CT versus DR for accurate diagnosis of isolated zygomatic fractures. Materials and methods: Eight zygomatic fractures were inflicted on four human cadavers with a free fall impactor technique. The cadavers were scanned using eight CT protocols, which were identical except for a systematic decrease in radiation dose per protocol, and one DR protocol. Single axial CT images were displayed alongside a DR image of the same fracture creating a total of 64 dual images for comparison. A total of 54 observers, including radiologists, radiographers and oral and maxillofacial surgeons, made a forced choice for either CT or DR. Results: Forty out of 54 observers (74%) preferred CT over DR (all with P < 0.05). Preference for CT was maintained even when radiation dose reduced from 147.4 mSv to 46.4 mSv (DR dose was 6.9 mSv). Only a single out of all raters preferred DR (P ¼ 0.0003). The remaining 13 observers had no significant preference. Conclusion: This study demonstrates that preference for axial CT over DR is not affected by substantial (~70%) CT dose reduction for the assessment of zygomatico-orbital fractures.
MULTIFILE
09/27/2016© 2025 SURF
We collect and process your data on this site to better understand how it is used. You can give your consent to all or selected purposes, or you can decline them all. For more information, see our privacy policy.
Privacy policy