To validate the model-based 3D dose calculation performed by theCOMPASS system, and to evaluate the use of the combination ofmodel-based and measurement-based 3D dose determination forclinical QA purposes.
The performance of neural electrodes in physiological fluid, especially in chronic use, is critical for the success of functional electrical stimulation devices. Tips of the Utah electrode arrays (UEAs) were coated with sputtered iridium oxide film (SIROF) and activated iridium oxide film (AIROF) to study the degradation during charge injection consistent with functional electrical stimulation (FES). The arrays were subjected to continuous biphasic, cathodal first, charge balanced (with equal cathodal and anodal pulse widths) current pulses for 7 h (>1 million pulses) at a frequency of 50 Hz. The amplitude and width of the current pulses were varied to determine the damage threshold of the coatings. Degradation was characterized by scanning electron microscopy, inductively coupled plasma mass spectrometry, electrochemical impedance spectroscopy and cyclic voltammetry. The injected charge and charge density per phase were found to play synergistic role in damaging the electrodes. The damage threshold for SIROF coated electrode tips of the UEA was between 60 nC with a charge density of 1.9 mC/cm2 per phase and 80 nC with a charge density of 1.0 mC/cm2 per phase. While for AIROF coated electrode tips, the threshold was between 40 nC with a charge density of 0.9 mC/cm2 per phase and 50 nC with a charge density of 0.5 mC/cm2 per phase. Compared to AIROF, SIROF showed higher damage threshold and therefore is highly recommended to be used as a stimulation material.
Abstract Aims: To lower the threshold for applying ultrasound (US) guidance during peripheral intravenous cannulation, nurses need to be trained and gain experience in using this technique. The primary outcome was to quantify the number of procedures novices require to perform before competency in US-guided peripheral intravenous cannulation was achieved. Materials and methods: A multicenter prospective observational study, divided into two phases after a theoretical training session: a handson training session and a supervised life-case training session. The number of US-guided peripheral intravenous cannulations a participant needed to perform in the life-case setting to become competent was the outcome of interest. Cusum analysis was used to determine the learning curve of each individual participant. Results: Forty-nine practitioners participated and performed 1855 procedures. First attempt cannulation success was 73% during the first procedure, but increased to 98% on the fortieth attempt (p<0.001). The overall first attempt success rate during this study was 93%. The cusum learning curve for each practitioner showed that a mean number of 34 procedures was required to achieve competency. Time needed to perform a procedure successfully decreased when more experience was achieved by the practitioner, from 14±3 minutes on first procedure to 3±1 minutes during the fortieth procedure (p<0.001). Conclusions: Competency in US-guided peripheral intravenous cannulation can be gained after following a fixed educational curriculum, resulting in an increased first attempt cannulation success as the number of performed procedures increased.
MULTIFILE