Reinstatement of memory-related neural activity measured with high temporal precision potentially provides a useful index for real-time monitoring of the timing of activation of memory content during cognitive processing. The utility of such an index extends to any situation where one is interested in the (relative) timing of activation of different sources of information in memory, a paradigm case of which is tracking lexical activation during language processing. Essential for this approach is that memory reinstatement effects are robust, so that their absence (in the average) definitively indicates that no lexical activation is present. We used electroencephalography to test the robustness of a reported subsequent memory finding involving reinstatement of frequency-specific entrained oscillatory brain activity during subsequent recognition. Participants learned lists of words presented on a background flickering at either 6 or 15 Hz to entrain a steady-state brain response. Target words subsequently presented on a non-flickering background that were correctly identified as previously seen exhibited reinstatement effects at both entrainment frequencies. Reliability of these statistical inferences was however critically dependent on the approach used for multiple comparisons correction. We conclude that effects are not robust enough to be used as a reliable index of lexical activation during language processing.
MULTIFILE
Chest imaging plays a pivotal role in screening and monitoring patients, and various predictive artificial intelligence (AI) models have been developed in support of this. However, little is known about the effect of decreasing the radiation dose and, thus, image quality on AI performance. This study aims to design a low-dose simulation and evaluate the effect of this simulation on the performance of CNNs in plain chest radiography. Seven pathology labels and corresponding images from Medical Information Mart for Intensive Care datasets were used to train AI models at two spatial resolutions. These 14 models were tested using the original images, 50% and 75% low-dose simulations. We compared the area under the receiver operator characteristic (AUROC) of the original images and both simulations using DeLong testing. The average absolute change in AUROC related to simulated dose reduction for both resolutions was <0.005, and none exceeded a change of 0.014. Of the 28 test sets, 6 were significantly different. An assessment of predictions, performed through the splitting of the data by gender and patient positioning, showed a similar trend. The effect of simulated dose reductions on CNN performance, although significant in 6 of 28 cases, has minimal clinical impact. The effect of patient positioning exceeds that of dose reduction.
LINK