Sustainable and Agile manufacturing is expected of future generation manufacturing systems. The goal is to create scalable, reconfigurable and adaptable manufacturing systems which are able to produce a range of products without new investments into new manufacturing equipment. This requires a new approach with a combination of high performance software and intelligent systems. Other case studies have used hybrid and intelligent systems in software before. However, they were mainly used to improve the logistic processes and are not commonly used within the hardware control loop. This paper introduces a case study on flexible and hybrid software architecture, which uses prototype manufacturing machines called equiplets. These systems should be applicable for the industry and are able to dynamically adapt to changes in the product as well as changes in the manufacturing systems. This is done by creating self-configurable machines which use intelligent control software, based on agent technology and computer vision. The requirements and resulting technologies are discussed using simple reasoning and analysis, leading to a basic design of a software control system, which is based on a hybrid distributed control system
Presented at the International Conference on Flexible Automation and Intelligent Manufacturing (FAIM) 23 - 26 June 2015 at the University of Wolverhampton, UK. Authorsupplied abstract: ABSTRACT Customized, on-demand manufacturing is growing through the use of new paradigms and technologies. Agile Manufacturing, cyber physical systems, and reconfigurable systems are examples of these changes. To provide high-mix, low-volume production there is a need for dynamic behaviour and manufacturing machines that can handle a large variety of services. Manufacturing systems can be made more dynamic by using agent-based technology. However, the reconfigurable aspect of these machines has yet to be explored. This paper investigates the possibility to adapt, i.e., reconfigure the hardware of manufacturing machines based on the current manufacturing demand. Using a simulation for a working agent-based platform with reconfiguration capabilities, this paper validates the effects of reconfigurable hardware to change capacity when producing a variety of products in a dynamic production environment. The paper continues to investigate required strategies to effectively use reconfiguration and counter the effects of disturbances that are likely to happen in such systems.
LINK
Abstract: Unlike manufacturing technology for semiconductors and printed circuit boards, the market for traditional micro assembly lacks a clear public roadmap. More agile manufacturing strategies are needed in an environment in which dealing with change becomes a rule instead of an exception. In this paper, an attempt is made to bring production with universal micro assembly cells to the next level. This is realised by placing a larger number of cells, called Equiplets, in a “Grid”. Equiplets are compact and low-cost manufacturing platforms that can be reconfigured to a broad number of applications. Benchmarking Equiplet production has shown reduced time to market and a smooth transition from R&D to Manufacturing. When higher production volumes are needed, more systems can be placed in parallel to meet the manufacturing demand. Costs of product design changes in the later stage of industrialisation have been reduced due to the modular production in grids, which allows the final design freeze to be postponed as late as possible. The need for invested capital is also pushed backwards accordingly. doi 10.1007/978-3-642-11598-1_32
LINK