The massive die-off of the sea urchin Diadema antillarum in 1983–1984 is one the main reasons for low coral recruitment and little coral recovery in the Caribbean. As the natural recovery of D. antillarum is slow to non-existent, multiple restoration studies have been attempted. There are currently three different approaches to obtain individuals for restocking: the translocation of wild-collected juveniles or adults, lab-reared juveniles cultured from wild-collected settlers, or lab-reared juveniles cultured from gametes. All three methods are costly and can only be applied on a relatively small scale. We here propose a fourth, new, approach, which we term assisted natural recovery (ANR) of D. antillarum populations. ANR, a concept already applied in terrestrial restoration to restore forests and grasslands, can accelerate succession by removing barriers to natural recovery. In this study, performed on the Dutch Caribbean island of Saba, suitable settlement substrate was provided in the form of bio ball streamers that were attached to the reef shortly before the settlement season. At the end of the experiment, reefs with streamers had significantly higher D. antillarum recruit densities than control reefs without additional settlement substrate, indicating that the lack of settlement substrate is an important factor constraining natural recovery. However, D. antillarum recruit abundance was low compared to the measured settlement rates, possibly due to low post-settlement survival. The size distribution of recruits showed that recruits almost never became larger than 20 mm, which is likely due to predation. We conclude that, next to low settlement availability, low post-settlement survival and high predation on recruits also constrain the natural recovery of D. antillarum populations on Saba. To improve the survival of settlers till adults, we propose to 1) reduce predation on settlers by using bio balls or other substrates that can provide shelter to larger individuals and 2) optimize the reef habitat by removing macroalgae, either manually or by facilitating other herbivores. To improve the survival of recruits, we suggest to 1) choose sites with a known lower predation density or 2) protect recruits with a corral around the reef underneath the streamers. The combination of these measures could improve prospects for ANR, and we expect this new approach can contribute to the recovery of D. antillarum populations in the future.
LINK
OBJECTIVE: to gain insight into what older adults after hip fracture perceive as most beneficial to their recovery to everyday life.DESIGN: qualitative research approach.SETTING: six skilled nursing facilities.PARTICIPANTS: 19 older community dwelling older adults (aged 65-94), who had recently received geriatric rehabilitation after hip fracture.METHODS: semi-structured interviews were conducted with 19 older adults after hip fracture. Coding techniques based on constructivist grounded theory were applied.RESULTS: four categories were derived from the data: 'restrictions for everyday life', 'recovery process', 'resources for recovery' and 'performing everyday activities'. Physical and psychological restrictions are consequences of hip fracture that older adults have struggled to address during recovery. Three different resources were found to be beneficial for recovery; 'supporting and coaching', 'myself' and 'technological support'. These resources influenced the recovery process. Having successful experiences during recovery led to doing everyday activities in the same manner as before; unsuccessful experiences led to ceasing certain activities altogether.CONCLUSION: participants highlight their own role ('myself') as essential for recovery. Additionally, coaching provides emotional support, which boosts self-confidence in performing everyday activities. Furthermore, technology can encourage older adults to become more active and being engaged in the recovery process. The findings suggest that more attention should be paid to follow-up interventions after discharge from inpatient rehabilitation to support older adults in finding new routines in their everyday activities.A conceptual model is presented and provides an understanding of the participants' experiences and perspectives concerning their process of recovery after hip fracture to everyday life.
BACKGROUND: Early mobilization has been proven effective for patients in intensive care units (ICUs) to improve functional recovery. However, early mobilization of critically ill, often mechanically ventilated, patients is cumbersome because of the attachment to tubes, drains, monitoring devices and muscle weakness. A mobile treadmill with bodyweight support may help to initiate mobilization earlier and more effectively. The aim of this study is to assess the effectiveness of weight-supported treadmill training in critically ill patients during and after ICU stay on time to independent functional ambulation. METHODS: In this randomized controlled trial, a custom-built bedside body weight-supported treadmill will be used and evaluated. Patients are included if they have been mechanically ventilated for at least 48 hours, are able to follow instructions, have quadriceps muscle strength of Medical Research Council sum-score 2 (MRC 2) or higher, can sit unsupported and meet the safety criteria for physical exercise. Exclusion criteria are language barriers, no prior walking ability, contraindications for physiotherapy or a neurological condition as reason for ICU admission. We aim to include 88 patients and randomize them into either the intervention or the control group. The intervention group will receive usual care plus bodyweight-supported treadmill training (BWSTT) daily. The BWSSTT consists of walking on a mobile treadmill while supported by a harness. The control group will receive usual care physiotherapy treatment daily consisting of progressive activities such as bed-cycling and active functional training exercises. In both groups, we will aim for a total of 40 minutes of physiotherapy treatment time every day in one or two sessions, as tolerated by the patient. The primary outcome is time to functional ambulation as measured in days, secondary outcomes include walking distance, muscle strength, status of functional mobility and symptoms of post-traumatic stress. All measurements will be done by assessors who are blinded to the intervention on the regular wards until hospital discharge. DISCUSSION: This will be the first study comparing the effects of BWSTT and conventional physiotherapy for critically ill patients during and after ICU stay. The results of this study contribute to a better understanding of the effectiveness of early physiotherapy interventions for critically ill patients. TRIAL REGISTRATION: Dutch Trial Register (NTR) ID: NL6766. Registered at 1 December 2017.
Currently, many novel innovative materials and manufacturing methods are developed in order to help businesses for improving their performance, developing new products, and also implement more sustainability into their current processes. For this purpose, additive manufacturing (AM) technology has been very successful in the fabrication of complex shape products, that cannot be manufactured by conventional approaches, and also using novel high-performance materials with more sustainable aspects. The application of bioplastics and biopolymers is growing fast in the 3D printing industry. Since they are good alternatives to petrochemical products that have negative impacts on environments, therefore, many research studies have been exploring and developing new biopolymers and 3D printing techniques for the fabrication of fully biobased products. In particular, 3D printing of smart biopolymers has attracted much attention due to the specific functionalities of the fabricated products. They have a unique ability to recover their original shape from a significant plastic deformation when a particular stimulus, like temperature, is applied. Therefore, the application of smart biopolymers in the 3D printing process gives an additional dimension (time) to this technology, called four-dimensional (4D) printing, and it highlights the promise for further development of 4D printing in the design and fabrication of smart structures and products. This performance in combination with specific complex designs, such as sandwich structures, allows the production of for example impact-resistant, stress-absorber panels, lightweight products for sporting goods, automotive, or many other applications. In this study, an experimental approach will be applied to fabricate a suitable biopolymer with a shape memory behavior and also investigate the impact of design and operational parameters on the functionality of 4D printed sandwich structures, especially, stress absorption rate and shape recovery behavior.
Electrohydrodynamic Atomization (EHDA), also known as Electrospray (ES), is a technology which uses strong electric fields to manipulate liquid atomization. Among many other areas, electrospray is currently used as an important tool for biomedical applications (droplet encapsulation), water technology (thermal desalination and metal recovery) and material sciences (nanofibers and nano spheres fabrication, metal recovery, selective membranes and batteries). A complete review about the particularities of this technology and its applications was recently published in a special edition of the Journal of Aerosol Sciences [1]. Even though EHDA is already applied in many different industrial processes, there are not many controlling tools commercially available which can be used to remotely operate the system as well as identify some spray characteristics, e.g. droplet size, operational mode, droplet production ratio. The AECTion project proposes the development of an innovative controlling system based on the electrospray current, signal processing & control and artificial intelligence to build a non-visual tool to control and characterize EHDA processes.
Due to the existing pressure for a more rational use of the water, many public managers and industries have to re-think/adapt their processes towards a more circular approach. Such pressure is even more critical in the Rio Doce region, Minas Gerais, due to the large environmental accident occurred in 2015. Cenibra (pulp mill) is an example of such industries due to the fact that it is situated in the river basin and that it has a water demanding process. The current proposal is meant as an academic and engineering study to propose possible solutions to decrease the total water consumption of the mill and, thus, decrease the total stress on the Rio Doce basin. The work will be divided in three working packages, namely: (i) evaluation (modelling) of the mill process and water balance (ii) application and operation of a pilot scale wastewater treatment plant (iii) analysis of the impacts caused by the improvement of the process. The second work package will also be conducted (in parallel) with a lab scale setup in The Netherlands to allow fast adjustments and broaden evaluation of the setup/process performance. The actions will focus on reducing the mill total water consumption in 20%.