The aviation industry needs led to an increase in the number of aircraft in the sky. When the number of flights within an airspace increases, the chance of a mid-air collision increases. Systems such as the Traffic Alert and Collision Avoidance System (TCAS) and Airborne Collision Avoidance System (ACAS) are currently used to alert pilots for potential mid-air collisions. The TCAS and the ACAS use algorithms to perform Aircraft Trajectory Predictions (ATPs) to detect potential conflicts between aircrafts. In this paper, three different aircraft trajectory prediction algorithms named Deep Neural Network (DNN), Random Forest (RF) and Extreme Gradient Boosting were implemented and evaluated in terms of their accuracy and robustness to predict the future aircraft heading. These algorithms were as well evaluated in the case of adversarial samples. Adversarial training is applied as defense method in order to increase the robustness of ATPs algorithms against the adversarial samples. Results showed that, comparing the three algorithm’s performance, the extreme gradient boosting algorithm was the most robust against adversarial samples and adversarial training may benefit the robustness of the algorithms against lower intense adversarial samples. The contributions of this paper concern the evaluation of different aircraft trajectory prediction algorithms, the exploration of the effects of adversarial attacks, and the effect of the defense against adversarial samples with low perturbation compared to no defense mechanism.
DOCUMENT
Machine learning models have proven to be reliable methods in classification tasks. However, little research has been done on classifying dwelling characteristics based on smart meter & weather data before. Gaining insights into dwelling characteristics can be helpful to create/improve the policies for creating new dwellings at NZEB standard. This paper compares the different machine learning algorithms and the methods used to correctly implement the models. These methods include the data pre-processing, model validation and evaluation. Smart meter data was provided by Groene Mient, which was used to train several machine learning algorithms. The models that were generated by the algorithms were compared on their performance. The results showed that Recurrent Neural Network (RNN) 2performed the best with 96% of accuracy. Cross Validation was used to validate the models, where 80% of the data was used for training purposes and 20% was used for testing purposes. Evaluation metrices were used to produce classification reports, which can indicate which of the models work the best for this specific problem. The models were programmed in Python.
DOCUMENT
Machine learning models have proven to be reliable methods in classification tasks. However, little research has been conducted on the classification of dwelling characteristics based on smart meter and weather data before. Gaining insights into dwelling characteristics, which comprise of the type of heating system used, the number of inhabitants, and the number of solar panels installed, can be helpful in creating or improving the policies to create new dwellings at nearly zero-energy standard. This paper compares different supervised machine learning algorithms, namely Logistic Regression, Support Vector Machine, K-Nearest Neighbor, and Long-short term memory, and methods used to correctly implement these algorithms. These methods include data pre-processing, model validation, and evaluation. Smart meter data, which was used to train several machine learning algorithms, was provided by Groene Mient. The models that were generated by the algorithms were compared on their performance. The results showed that the Long-short term memory performed the best with 96% accuracy. Cross Validation was used to validate the models, where 80% of the data was used for training purposes and 20% was used for testing purposes. Evaluation metrics were used to produce classification reports, which indicates that the Long-short term memory outperforms the compared models on the evaluation metrics for this specific problem.
DOCUMENT
Recent years have seen a massive growth in ethical and legal frameworks to govern data science practices. Yet one of the core questions associated with ethical and legal frameworks is the extent to which they are implemented in practice. A particularly interesting case in this context comes to public officials, for whom higher standards typically exist. We are thus trying to understand how ethical and legal frameworks influence the everyday practices on data and algorithms of public sector data professionals. The following paper looks at two cases: public sector data professionals (1) at municipalities in the Netherlands and (2) at the Netherlands Police. We compare these two cases based on an analytical research framework we develop in this article to help understanding of everyday professional practices. We conclude that there is a wide gap between legal and ethical governance rules and the everyday practices.
MULTIFILE
Routine immunization (RI) of children is the most effective and timely public health intervention for decreasing child mortality rates around the globe. Pakistan being a low-and-middle-income-country (LMIC) has one of the highest child mortality rates in the world occurring mainly due to vaccine-preventable diseases (VPDs). For improving RI coverage, a critical need is to establish potential RI defaulters at an early stage, so that appropriate interventions can be targeted towards such population who are identified to be at risk of missing on their scheduled vaccine uptakes. In this paper, a machine learning (ML) based predictive model has been proposed to predict defaulting and non-defaulting children on upcoming immunization visits and examine the effect of its underlying contributing factors. The predictive model uses data obtained from Paigham-e-Sehat study having immunization records of 3,113 children. The design of predictive model is based on obtaining optimal results across accuracy, specificity, and sensitivity, to ensure model outcomes remain practically relevant to the problem addressed. Further optimization of predictive model is obtained through selection of significant features and removing data bias. Nine machine learning algorithms were applied for prediction of defaulting children for the next immunization visit. The results showed that the random forest model achieves the optimal accuracy of 81.9% with 83.6% sensitivity and 80.3% specificity. The main determinants of vaccination coverage were found to be vaccine coverage at birth, parental education, and socio-economic conditions of the defaulting group. This information can assist relevant policy makers to take proactive and effective measures for developing evidence based targeted and timely interventions for defaulting children.
MULTIFILE
Whitepaper: The use of AI is on the rise in the financial sector. Utilizing machine learning algorithms to make decisions and predictions based on the available data can be highly valuable. AI offers benefits to both financial service providers and its customers by improving service and reducing costs. Examples of AI use cases in the financial sector are: identity verification in client onboarding, transaction data analysis, fraud detection in claims management, anti-money laundering monitoring, price differentiation in car insurance, automated analysis of legal documents, and the processing of loan applications.
DOCUMENT
BackgroundOcclusions of intravenous (IV) tubing can prevent vital and time-critical medication or solutions from being delivered into the bloodstream of patients receiving IV therapy. At low flow rates (≤ 1 ml/h) the alarm delay (time to an alert to the user) can be up to 2 h using conventional pressure threshold algorithms. In order to reduce alarm delays we developed and evaluated the performance of two new real-time occlusion detection algorithms and one co-occlusion detector that determines the correlation in trends in pressure changes for multiple pumps.MethodsBench-tested experimental runs were recorded in triplicate at rates of 1, 2, 4, 8, 16, and 32 ml/h. Each run consisted of 10 min of non-occluded infusion followed by a period of occluded infusion of 10 min or until a conventional occlusion alarm at 400 mmHg occurred. The first algorithm based on binary logistic regression attempts to detect occlusions based on the pump’s administration rate Q(t) and pressure sensor readings P(t). The second algorithm continuously monitored whether the actual variation in the pressure exceeded a threshold of 2 standard deviations (SD) above the baseline pressure. When a pump detected an occlusion using the SD algorithm, a third algorithm correlated the pressures of multiple pumps to detect the presence of a shared occlusion. The algorithms were evaluated using 6 bench-tested baseline single-pump occlusion scenarios, 9 single-pump validation scenarios and 7 multi-pump co-occlusion scenarios (i.e. with flow rates of 1 + 1, 1 + 2, 1 + 4, 1 + 8, 1 + 16, and 1 + 32 ml/h respectively). Alarm delay was the primary performance measure.ResultsIn the baseline single-pump occlusion scenarios, the overall mean ± SD alarm delay of the regression and SD algorithms were 1.8 ± 0.8 min and 0.4 ± 0.2 min, respectively. Compared to the delay of the conventional alarm this corresponds to a mean time reduction of 76% (P = 0.003) and 95% (P = 0.001), respectively. In the validation scenarios the overall mean ± SD alarm delay of the regression and SD algorithms were respectively 1.8 ± 1.6 min and 0.3 ± 0.2 min, corresponding to a mean time reduction of 77% and 95%. In the multi-pump scenarios a correlation > 0.8 between multiple pump pressures after initial occlusion detection by the SD algorithm had a mean ± SD alarm delay of 0.4 ± 0.2 min. In 2 out of the 9 validation scenarios an occlusion was not detected by the regression algorithm before a conventional occlusion alarm occurred. Otherwise no occlusions were missed.ConclusionsIn single pumps, both the regression and SD algorithm considerably reduced alarm delay compared to conventional pressure limit-based detection. The SD algorithm appeared to be more robust than the regression algorithm. For multiple pumps the correlation algorithm reliably detected co-occlusions. The latter may be used to localize the segment of tubing in which the occlusion occurs.
LINK
Background: Modern modeling techniques may potentially provide more accurate predictions of dichotomous outcomes than classical techniques. Objective: In this study, we aimed to examine the predictive performance of eight modeling techniques to predict mortality by frailty. Methods: We performed a longitudinal study with a 7-year follow-up. The sample consisted of 479 Dutch community-dwelling people, aged 75 years and older. Frailty was assessed with the Tilburg Frailty Indicator (TFI), a self-report questionnaire. This questionnaire consists of eight physical, four psychological, and three social frailty components. The municipality of Roosendaal, a city in the Netherlands, provided the mortality dates. We compared modeling techniques, such as support vector machine (SVM), neural network (NN), random forest, and least absolute shrinkage and selection operator, as well as classical techniques, such as logistic regression, two Bayesian networks, and recursive partitioning (RP). The area under the receiver operating characteristic curve (AUROC) indicated the performance of the models. The models were validated using bootstrapping. Results: We found that the NN model had the best validated performance (AUROC=0.812), followed by the SVM model (AUROC=0.705). The other models had validated AUROC values below 0.700. The RP model had the lowest validated AUROC (0.605). The NN model had the highest optimism (0.156). The predictor variable “difficulty in walking” was important for all models. Conclusions: Because of the high optimism of the NN model, we prefer the SVM model for predicting mortality among community-dwelling older people using the TFI, with the addition of “gender” and “age” variables. External validation is a necessary step before applying the prediction models in a new setting.
DOCUMENT
This paper investigate to use of information technology, i.e. machine learning algorithms for water assessment in Timor-Leste. It is essential to access clean water to ensure the safety for humans and others livings in this world. The Water Quality Index (WQI) is the standard tool for assessing water quality, which can be calculated from physicochemical and microbiological parameters. However, in developing countries, it is continuing need to bring water and energy for the most disadvantaged, make it necessary to find new solutions. In such case, missing-value imputation and machine learning models are useful for classifying water samples into suitable or unsuitable with significant accuracy. Some imputation methods were tested, and four machine learning algorithms were explored: logistic regression, support vector machine, random forest, and Gaussian naïve Bayes. We obtained a dataset with 368 observations from 26 groundwater sampling points in Dili city of Timor-Leste. According to experimental results, it is found that 64% of the water samples are suitable for human consumption. We also found k-NN imputation and random forest method were the clear winners, achieving 96% accuracy with three-fold cross validation. The analysis revealed that some parameters significantly affected the classification results.
DOCUMENT
Abstract Background: We studied the relationship between trismus (maximum interincisor opening [MIO] ≤35 mm) and the dose to the ipsilateral masseter muscle (iMM) and ipsilateral medial pterygoid muscle (iMPM). Methods: Pretreatment and post-treatment measurement of MIO at 13 weeks revealed 17% of trismus cases in 83 patients treated with chemoradiation and intensity-modulated radiation therapy. Logistic regression models were fitted with dose parameters of the iMM and iMPM and baseline MIO (bMIO). A risk classification tree was generated to obtain optimal cut-off values and risk groups. Results: Dose levels of iMM and iMPM were highly correlated due to proximity. Both iMPM and iMM dose parameters were predictive for trismus, especially mean dose and intermediate dose volume parameters. Adding bMIO, significantly improved Normal Tissue Complication Probability (NTCP) models. Optimal cutoffs were 58 Gy (mean dose iMPM), 22 Gy (mean dose iMM) and 46 mm (bMIO). Conclusions: Both iMPM and iMM doses, as well as bMIO, are clinically relevant parameters for trismus prediction.
DOCUMENT