Background & aims: Accurate diagnosis of sarcopenia requires evaluation of muscle quality, which refers to the amount of fat infiltration in muscle tissue. In this study, we aim to investigate whether we can independently predict mortality risk in transcatheter aortic valve implantation (TAVI) patients, using automatic deep learning algorithms to assess muscle quality on procedural computed tomography (CT) scans. Methods: This study included 1199 patients with severe aortic stenosis who underwent transcatheter aortic valve implantation (TAVI) between January 2010 and January 2020. A procedural CT scan was performed as part of the preprocedural-TAVI evaluation, and the scans were analyzed using deep-learning-based software to automatically determine skeletal muscle density (SMD) and intermuscular adipose tissue (IMAT). The association of SMD and IMAT with all-cause mortality was analyzed using a Cox regression model, adjusted for other known mortality predictors, including muscle mass. Results: The mean age of the participants was 80 ± 7 years, 53% were female. The median observation time was 1084 days, and the overall mortality rate was 39%. We found that the lowest tertile of muscle quality, as determined by SMD, was associated with an increased risk of mortality (HR 1.40 [95%CI: 1.15–1.70], p < 0.01). Similarly, low muscle quality as defined by high IMAT in the lowest tertile was also associated with increased mortality risk (HR 1.24 [95%CI: 1.01–1.52], p = 0.04). Conclusions: Our findings suggest that deep learning-assessed low muscle quality, as indicated by fat infiltration in muscle tissue, is a practical, useful and independent predictor of mortality after TAVI.
As every new generation of civil aircraft creates more on-wing data and fleets gradually become more connected with the ground, an increased number of opportunities can be identified for more effective Maintenance, Repair and Overhaul (MRO) operations. Data are becoming a valuable asset for aircraft operators. Sensors measure and record thousands of parameters in increased sampling rates. However, data do not serve any purpose per se. It is the analysis that unleashes their value. Data analytics methods can be simple, making use of visualizations, or more complex, with the use of sophisticated statistics and Artificial Intelligence algorithms. Every problem needs to be approached with the most suitable and less complex method. In MRO operations, two major categories of on-wing data analytics problems can be identified. The first one requires the identification of patterns, which enable the classification and optimization of different maintenance and overhaul processes. The second category of problems requires the identification of rare events, such as the unexpected failure of parts. This cluster of problems relies on the detection of meaningful outliers in large data sets. Different Machine Learning methods can be suggested here, such as Isolation Forest and Logistic Regression. In general, the use of data analytics for maintenance or failure prediction is a scientific field with a great potentiality. Due to its complex nature, the opportunities for aviation Data Analytics in MRO operations are numerous. As MRO services focus increasingly in long term contracts, maintenance organizations with the right forecasting methods will have an advantage. Data accessibility and data quality are two key-factors. At the same time, numerous technical developments related to data transfer and data processing can be promising for the future.
Living a sedentary lifestyle is one of the major causes of numerous health problems. To encourage employees to lead a less sedentary life, the Hanze University started a health promotion program. One of the interventions in the program was the use of an activity tracker to record participants' daily step count. The daily step count served as input for a fortnightly coaching session. In this paper, we investigate the possibility of automating part of the coaching procedure on physical activity by providing personalized feedback throughout the day on a participant's progress in achieving a personal step goal. The gathered step count data was used to train eight different machine learning algorithms to make hourly estimations of the probability of achieving a personalized, daily steps threshold. In 80% of the individual cases, the Random Forest algorithm was the best performing algorithm (mean accuracy = 0.93, range = 0.88–0.99, and mean F1-score = 0.90, range = 0.87–0.94). To demonstrate the practical usefulness of these models, we developed a proof-of-concept Web application that provides personalized feedback about whether a participant is expected to reach his or her daily threshold. We argue that the use of machine learning could become an invaluable asset in the process of automated personalized coaching. The individualized algorithms allow for predicting physical activity during the day and provides the possibility to intervene in time.