This paper describes a concept where products are equipped with agents that will assist in recycling and repairing the product. These so-called product agents represent the product in cyberspace and are capable to negotiate with other products in case of recycling or repair. Some product agents of broken products will offer spare parts, other agents will look for spare parts to repair a broken product. On the average this will enlarge the lifetime of a product and in some cases prevent wasting resources. Apart from reuse of spare parts these agents will also help to locate rare elements in a device, so these elements can be recycled more easily.
DOCUMENT
Background: Patients with Senning repair for complete transposition of the great arteries (d-TGA) show an impaired exercise tolerance. Our aim was to investigate changes in exercise capacity in children, adolescents and adults with Senning operation. Methods: Peak oxygen uptake (peak VO2), oxygen pulse and heart rate were assessed by cardiopulmonary exercise tests (CPET) and compared to normal values. Rates of change were calculated by linear regression analysis. Right ventricular (RV) function was assessed by echocardiography. Results: Thirty-four patients (22 male) performed 3.5 (range 3–6) CPET with an interval of ≥ 6 months. Mean age at first assessment was 16.4 ± 4.27 years. Follow-up period averaged 6.8 ± 2 years. Exercise capacity was reduced (p<0.0005) and the decline of peak VO2 (−1.3 ± 3.7 %/year; p=0.015) and peak oxygen pulse (−1.4 ± 3.0 %/year; p=0.011) was larger than normal, especially before adulthood and in female patients (p<0.01). During adulthood, RV contractility changes were significantly correlated with the decline of peak oxygen pulse (r= −0.504; p=0.047). Conclusions: In patients with Senning operation for d-TGA, peak VO2 and peak oxygen pulse decrease faster with age compared to healthy controls. This decline is most obvious during childhood and adolescence, and suggests the inability to increase stroke volume to the same extent as healthy peers during growth. Peak VO2 and peak oxygen pulse remain relatively stable during early adulthood. However, when RV contractility decreases, a faster decline in peak oxygen pulse is observed
DOCUMENT
OBJECTIVE: Optimal timing of palatal repair is still subject of discussion. Although literature provides some evidence that palatal closure prior to 6 months positively influence speech outcome in children with clefts, only few studies verified this hypothesis. The purpose of this study was to describe and compare articulation and resonance characteristics following early (≤6 months) and later (>6 months) palatal repair, performed using the Sommerlad technique. METHODS: Comparison was made between 12 Ugandan children with isolated cleft (lip and) palate following early palatal repair (mean age: 3.3 m) and 12 Belgian patients with later palatal repair (mean age: 11.1 m), matched for cleft type, age and gender. A Ugandan and Belgian age- and gender-matched control group without clefts was included to control for language, culture and other environmental factors. Articulation assessments consisted of consonant inventories and phonetic and phonological analyses that were based on consensus transcriptions. In addition, resonance was evaluated by perceptual consensus ratings and objective mean nasalance values. RESULTS: The Belgian and Ugandan control groups were comparable for the majority of the variables. Comparison of cleft palate groups revealed no clinically relevant significant group differences for consonant inventory or phonological processes. Phonetic analysis showed significantly more distortions in the Belgian cleft palate group due to higher occurrence frequencies for (inter)dental productions of apico-alveolar consonants. Neither perceptual consensus ratings of hypernasality, hyponasality, cul-de-sac resonance and nasal emission/turbulence, nor objective mean nasalance values for oral speech samples revealed significant group differences (p>0.05). CONCLUSION: Articulation and resonance characteristics of young children following palatal repair before and after 6 months of age seem to be at least comparable.
DOCUMENT
De technische en economische levensduur van auto’s verschilt. Een goed onderhouden auto met dieselmotor uit het bouwjaar 2000 kan technisch perfect functioneren. De economische levensduur van diezelfde auto is echter beperkt bij introductie van strenge milieuzones. Bij de introductie en verplichtstelling van geavanceerde rijtaakondersteunende systemen (ADAS) zien we iets soortgelijks. Hoewel de auto technisch gezien goed functioneert kunnen verouderde software, algorithmes en sensoren leiden tot een beperkte levensduur van de gehele auto. Voorbeelden: - Jeep gehackt: verouderde veiligheidsprotocollen in de software en hardware beperkten de economische levensduur. - Actieve Cruise Control: sensoren/radars van verouderde systemen leiden tot beperkte functionaliteit en gebruikersacceptatie. - Tesla: bij bestaande auto’s worden verouderde sensoren uitgeschakeld waardoor functies uitvallen. In 2019 heeft de EU een verplichting opgelegd aan automobielfabrikanten om 20 nieuwe ADAS in te bouwen in nieuw te ontwikkelen auto’s, ongeacht prijsklasse. De mate waarin deze ADAS de economische levensduur van de auto beperkt is echter nog onvoldoende onderzocht. In deze KIEM wordt dit onderzocht en wordt tevens de parallel getrokken met de mobiele telefonie; beide maken gebruik van moderne sensoren en software. We vergelijken ontwerpeisen van telefoons (levensduur van gemiddeld 2,5 jaar) met de eisen aan moderne ADAS met dezelfde sensoren (levensduur tot 20 jaar). De centrale vraag luidt daarom: Wat is de mogelijke impact van veroudering van ADAS op de economische levensduur van voertuigen en welke lessen kunnen we leren uit de onderliggende ontwerpprincipes van ADAS en Smartphones? De vraag wordt beantwoord door (i) literatuuronderzoek naar de veroudering van ADAS (ii) Interviews met ontwerpers van ADAS, leveranciers van retro-fit systemen en ontwerpers van mobiele telefoons en (iii) vergelijkend rij-onderzoek naar het functioneren van ADAS in auto’s van verschillende leeftijd en prijsklassen.
Omdat de composieten industrie een zeer snel groeiende industrie is, is de vraag naar kosteneffectieve onderhoudsmethoden groeiende. Deze toenemende vraag kan beantwoord worden met behulp van geautomatiseerde composieten reparatie. Het idee is om een robot arm uit te rusten met defect-detectie-systeem en een frees om een gevonden defect uit het materiaal te frezen. Dit idee is gebaseerd op een eerder onderzoek wat is uitgevoerd bij Inholland met als onderwerp het automatisch verwijderen van materiaal met een robot (RAAK2014-1-26M). Het commercieel potentieel is groot aangezien weinig tot geen van deze automatische reparaties worden aangeboden en de vraag steeds groter wordt aangezien composieten steeds meer worden toegepast. Na het onderzoek zal al dan niet een octrooi aanvraag worden verricht om vervolgens het onderzoek te publiceren. De doelstelling is het inzicht verkrijgen in de economische en technische haalbaarheid van dit product. Deze twee onderwerpen zullen worden onderzocht door twee afstudeer stagiaires en begeleid worden door Ruben van den Brink. Daarnaast kunnen een aantal deskundigen aanwezig in het laboratorium van Inholland Composites ook geraadpleegd worden. Hier is specialistische vakkennis aanwezig waarmee eventuele risico’s op expertise-tekort worden gemitigeerd.
In order to stay competitive and respond to the increasing demand for steady and predictable aircraft turnaround times, process optimization has been identified by Maintenance, Repair and Overhaul (MRO) SMEs in the aviation industry as their key element for innovation. Indeed, MRO SMEs have always been looking for options to organize their work as efficient as possible, which often resulted in applying lean business organization solutions. However, their aircraft maintenance processes stay characterized by unpredictable process times and material requirements. Lean business methodologies are unable to change this fact. This problem is often compensated by large buffers in terms of time, personnel and parts, leading to a relatively expensive and inefficient process. To tackle this problem of unpredictability, MRO SMEs want to explore the possibilities of data mining: the exploration and analysis of large quantities of their own historical maintenance data, with the meaning of discovering useful knowledge from seemingly unrelated data. Ideally, it will help predict failures in the maintenance process and thus better anticipate repair times and material requirements. With this, MRO SMEs face two challenges. First, the data they have available is often fragmented and non-transparent, while standardized data availability is a basic requirement for successful data analysis. Second, it is difficult to find meaningful patterns within these data sets because no operative system for data mining exists in the industry. This RAAK MKB project is initiated by the Aviation Academy of the Amsterdam University of Applied Sciences (Hogeschool van Amsterdan, hereinafter: HvA), in direct cooperation with the industry, to help MRO SMEs improve their maintenance process. Its main aim is to develop new knowledge of - and a method for - data mining. To do so, the current state of data presence within MRO SMEs is explored, mapped, categorized, cleaned and prepared. This will result in readable data sets that have predictive value for key elements of the maintenance process. Secondly, analysis principles are developed to interpret this data. These principles are translated into an easy-to-use data mining (IT)tool, helping MRO SMEs to predict their maintenance requirements in terms of costs and time, allowing them to adapt their maintenance process accordingly. In several case studies these products are tested and further improved. This is a resubmission of an earlier proposal dated October 2015 (3rd round) entitled ‘Data mining for MRO process optimization’ (number 2015-03-23M). We believe the merits of the proposal are substantial, and sufficient to be awarded a grant. The text of this submission is essentially unchanged from the previous proposal. Where text has been added – for clarification – this has been marked in yellow. Almost all of these new text parts are taken from our rebuttal (hoor en wederhoor), submitted in January 2016.