This study investigated the added value, i.e. discriminative and concurrent validity and reproducibility, of an eye-hand coordination test relevant to table tennis as part of talent identification. Forty-three table tennis players (7–12 years) from national (n = 13), regional (n = 11) and local training centres (n = 19) participated. During the eye-hand coordination test, children needed to throw a ball against a vertical positioned table tennis table with one hand and to catch the ball correctly with the other hand as frequently as possible in 30 seconds. Four different test versions were assessed varying the distance to the table (1 or 2 meter) and using a tennis or table tennis ball. ‘Within session’ reproducibility was estimated for the two attempts of the initial tests and ten youngsters were retested after 4 weeks to estimate ‘between sessions’ reproducibility. Validity analyses using age as covariate showed that players from the national and regional centres scored significantly higher than players from the local centre in all test versions (p<0.05). The tests at 1 meter demonstrated better discriminative ability than those at 2 meter. While all tests but one had a positive significant association with competition outcome, which were corrected for age influences, the version with a table tennis ball at 1 meter showed the highest association (r = 0.54; p = 0.001). Differences between the first and second attempts were comparable for all test versions (between −8 and +7 repetitions) with ICC 's ranging from 0.72 to 0.87. The smallest differences were found for the test with a table tennis ball at 1 meter (between −3 and +3 repetitions). Best test version as part of talent identification appears to be the version with a table tennis ball at 1 meter regarding the psychometric characteristics evaluated. Longitudinal studies are necessary to evaluate the predictive value of this test.
MULTIFILE
No summary available
BACKGROUND: Near-infrared spectroscopy (NIRS) measurements of oxygenation reflect O2 delivery and utilization in exercising muscle and may improve detection of a critical exercise threshold.PURPOSE: First, to detect an oxygenation breakpoint (Δ[O2HbMb-HHbMb]-BP) and compare this breakpoint to ventilatory thresholds during a maximal incremental test across sexes and training status. Second, to assess reproducibility of NIRS signals and exercise thresholds and investigate confounding effects of adipose tissue thickness on NIRS measurements.METHODS: Forty subjects (10 trained male cyclists, 10 trained female cyclists, 11 endurance trained males and 9 recreationally trained males) performed maximal incremental cycling exercise to determine Δ[O2HbMb-HHbMb]-BP and ventilatory thresholds (VT1 and VT2). Muscle haemoglobin and myoglobin O2 oxygenation ([HHbMb], [O2HbMb], SmO2) was determined in m. vastus lateralis. Δ[O2HbMb-HHbMb]-BP was determined by double linear regression. Trained cyclists performed the maximal incremental test twice to assess reproducibility. Adipose tissue thickness (ATT) was determined by skinfold measurements.RESULTS: Δ[O2HbMb-HHbMb]-BP was not different from VT1, but only moderately related (r = 0.58-0.63, p<0.001). VT1 was different across sexes and training status, whereas Δ[O2HbMb-HHbMb]-BP differed only across sexes. Reproducibility was high for SmO2 (ICC = 0.69-0.97), Δ[O2HbMb-HHbMb]-BP (ICC = 0.80-0.88) and ventilatory thresholds (ICC = 0.96-0.99). SmO2 at peak exercise and at occlusion were strongly related to adipose tissue thickness (r2 = 0.81, p<0.001; r2 = 0.79, p<0.001). Moreover, ATT was related to asymmetric changes in Δ[HHbMb] and Δ[O2HbMb] during incremental exercise (r = -0.64, p<0.001) and during occlusion (r = -0.50, p<0.05).CONCLUSION: Although the oxygenation threshold is reproducible and potentially a suitable exercise threshold, VT1 discriminates better across sexes and training status during maximal stepwise incremental exercise. Continuous-wave NIRS measurements are reproducible, but strongly affected by adipose tissue thickness.
Structural and functional knowledge of proteins, which are essential in biological processes, is fundamental for our understanding of the Chemistry of Life. Structural biology - the field that studies the structure and function of proteins – has seen several revolutions over the last few years. Single particle analysis (SPA), where individual macromolecular assemblies are imaged under cryogenic conditions within highly automated electron microscopes, has been used to elucidate the structures of many novel and important proteins and complexes. Deep-learning–based computational techniques provided systematic predictions of an million three-dimensional protein structures. Cryo-electron tomography (ET) combined with sub-tomogram averaging (STA) enabled the investigation of conformational states of large macromolecular complexes. We expect in situ structural biology, where macromolecular assemblies are studied within the interior of focused-ion-beam milled frozen cells, to become the next revolution in our field. Such revolution would require well prepared vitreous samples (cells, tissue slices, organoids): the sample should be cooled fast enough to prevent the formation of crystalline ice. Previously, we developed the technology to prepare SPA samples using jets of cryogenic fluid directed onto the sample. This device, the VitroJet, has been further developed into a commercial product by CryoSol-World and has been sold worldwide. Here, we wish to advance the jetting technology such that it can vitrify cells. Crucial aspects are the speed of the jets and the timing and reproducibility of the fronts of the cryogens arriving onto the sample. We will design, build, characterise and refine a next generation of the ethane cup, a core component within the VitroJet. If successful, we should be able to increase its vitrification potential as well as its reproducibility by more than one order of magnitude. This technology will enable in situ structural biology studies necessary to understand the Chemistry of Life.