The purpose of this paper is to investigate how resistance to change might be a consequence of differences in professional discourse of professional groups working together in a change program.
DOCUMENT
Most existing models in supply chain management literature proving the potential of a vertical logistics collaboration decision see individual decision makers as fully rational agents. Nevertheless, literature review makes clear individuals are usually reluctant to change and in consequence they do not always respond to relative differences in a rational manner. The conducted Stated Preference experiment confirms this statement and shows that shippers leave beneficial collaboration opportunities unexploited because they have a certain level of resistance to intensify collaboration with their LSP. This inertia level is measured in terms of costs.
DOCUMENT
Professionals' willingness to change is a necessity for successful implementation of changes in the organisation. This study focused on the influence of a transformational leadership style on professionals' willingness to change. This multiple case study was performed in three project management organisations that had recently implemented a new business information system. The research data were obtained through both qualitative and quantitative data collection. The qualitative investigation revealed that through leading by good example a manager has a positive influence on their employees' willingness to change. However, the quantitative investigation showed that there is no relationship between transformational leadership and the motivational factors of willingness to change. Finally, the study showed that the most important factors of employees' willingness to change are timing, involvement, emotions, necessity, and added value
DOCUMENT
Recent research by the renowned Royal Institution of Chartered Surveyors (RICS) shows that more than 2/3 of all CO2 is emitted during the building process and less than 1/3 during use to heat the building and the tap water. Lightweight, local and biobased materials such as biocomposites to replace concrete and fossil based cladding are in the framework of climate change, a necessity for future building. Using plant fiber in polymer composites is especially interesting for construction since natural fibers exhibit comparative good mechanical properties with small specific weight, which defines the potential for lightweight constructions. The use of renewable resources, will affect the ecosystem favorably and the production costs of construction materials could also decrease. However, one disadvantage of natural fibers in plastics is their hydrophilic properties. In construction the materials need to meet special requirements like the resistance against fluctuating weather conditions (Ticoalu et al., 2010). In contrast to synthetic fibers, the natural ones are more moisture- and UV-radiation-sensitive. That may lead to degradation of these materials and a decreasing in quality of products. (Lopez et al., 2006; Mokhothu und John, 2017) Tanatex and NPSP have approached CoE BBE/Avans to assist in a study where fibres impregnated with the (modified) Tanatex products will be used for reinforcement of thermoset biopolymers. The influence of the different Tanatex products on the moisture absorption of natural/cellulosic fibers and the adhesion on the fibers on main composite matrix will be measured. The effect of Tantex products can optimize the bonding reaction between the resin and the fibers in the (bio) composite and result to improved strength and physico-chemical properties of the biocomposite materials. (word count: 270)
Buildings are responsible for approximately 40% of energy consumption and 36% of carbon dioxide (CO2) emissions in the EU, and the largest energy consumer in Europe (https://ec.europa.eu/energy). Recent research shows that more than 2/3 of all CO2 is emitted during the building process whereas less than 1/3 is emitted during use. Cement is the source of about 8% of the world's CO2 emissions and innovation to create a distributive change in building practices is urgently needed, according to Chatham House report (Lehne et al 2018). Therefore new sustainable materials must be developed to replace concrete and fossil based building materials. Lightweight biobased biocomposites are good candidates for claddings and many other non-bearing building structures. Biocarbon, also commonly known as Biochar, is a high-carbon, fine-grained solid that is produced through pyrolysis processes and currently mainly used for energy. Recently biocarbon has also gained attention for its potential value with in industrial applications such as composites (Giorcellia et al, 2018; Piri et.al, 2018). Addition of biocarbon in the biocomposites is likely to increase the UV-resistance and fire resistance of the materials and decrease hydrophilic nature of composites. Using biocarbon in polymer composites is also interesting because of its relatively low specific weight that will result to lighter composite materials. In this Building Light project the SMEs Torrgas and NPSP will collaborate with and Avans/CoE BBE in a feasibility study on the use of biocarbon in a NPSP biocomposite. The physicochemical properties and moisture absorption of the composites with biocarbon filler will be compared to the biocomposite obtained with the currently used calcium carbonate filler. These novel biocarbon-biocomposites are anticipated to have higher stability and lighter weight, hence resulting to a new, exciting building materials that will create new business opportunities for both of the SME partners.
Design, Design Thinking, and Co-design have gained global recognition as powerful approaches for innovation and transformation. These methodologies foster stakeholder engagement, empathy, and collective sense-making, and are increasingly applied to tackle complex societal and institutional challenges. However, despite their collaborative potential, many initiatives encounter resistance, participation fatigue, or only result in superficial change. A key reason lies in the overlooked undercurrent—the hidden systemic dynamics that shape transitions. This one-year exploratory research project, initiated by the Expertise Network Systemic Co-design (ESC), aims to make systemic work accessible to creative professionals and companies working in social and transition design. It focuses on the development of a Toolkit for Systemic Work, enabling professionals to recognize underlying patterns, power structures, and behavioral dynamics that can block or accelerate innovation. The research builds on the shared learning agenda of the ESC network, which brings together universities of applied sciences, design practitioners, and organizations such as the Design Thinkers Group, Mindpact, and Vonken van Vernieuwing. By integrating systemic insights—drawing from fields like systemic therapy, constellation work, and behavioral sciences—into co-design practices, the project strengthens the capacity to not only design solutions but also navigate the forces that shape sustainable change. The central research question is: How can we make systemic work accessible to creative professionals, to support its application in social and transition design? Through the development and testing of practical tools and methods, this project bridges the gap between academic insights and the concrete needs of practitioners. It contributes to the professionalization of design for social innovation by embedding systemic awareness and collective learning into design processes, offering a foundation for deeper impact in societal transitions.