The research presented in this thesis has highlighted (bio)geochemical, hydrological, and wetland ecological processes that interact and enhance ecosystem development on wetlands built on fine sediment. A combination of greenhouse and laboratory experiments were conducted. Some measured data from these experiments formed important input for subsequent analysis in a modeling environment. The findings presented in Chapters 2-6 can be divided into four topics: 1) Plant–soil interactions in the terrestrial zone, 2) wetland–terrestrial processes influencing nutrient availability in the land–water zone, 3) effects of plants on sediment consolidation in the terrestrial zone, and 4) effects of bioturbation on nutrient availability in the aquatic zone. The next sections give a summary of the results for these four topics. The last section summarizes the recommendations formulated for the Marker Wadden project.
MULTIFILE
Insulin sensitivity and metabolic flexibility decrease in response to bed rest, but the temporal and causal adaptations in human skeletal muscle metabolism are not fully defined. Here, we use an integrative approach to assess human skeletal muscle metabolism during bed rest and provide a multi-system analysis of how skeletal muscle and the circulatory system adapt to short- and long-term bed rest (German Clinical Trials: DRKS00015677). We uncover that intracellular glycogen accumulation after short-term bed rest accompanies a rapid reduction in systemic insulin sensitivity and less GLUT4 localization at the muscle cell membrane, preventing further intracellular glycogen deposition after long-term bed rest. We provide evidence of a temporal link between the accumulation of intracellular triglycerides, lipotoxic ceramides, and sphingomyelins and an altered skeletal muscle mitochondrial structure and function after long-term bed rest. An intracellular nutrient overload therefore represents a crucial determinant for rapid skeletal muscle insulin insensitivity and mitochondrial alterations after prolonged bed rest.
BACKGROUND: Increasing evidence indicates the potential benefits of restricted fluid management in critically ill patients. Evidence lacks on the optimal fluid management strategy for invasively ventilated COVID-19 patients. We hypothesized that the cumulative fluid balance would affect the successful liberation of invasive ventilation in COVID-19 patients with acute respiratory distress syndrome (ARDS).METHODS: We analyzed data from the multicenter observational 'PRactice of VENTilation in COVID-19 patients' study. Patients with confirmed COVID-19 and ARDS who required invasive ventilation during the first 3 months of the international outbreak (March 1, 2020, to June 2020) across 22 hospitals in the Netherlands were included. The primary outcome was successful liberation of invasive ventilation, modeled as a function of day 3 cumulative fluid balance using Cox proportional hazards models, using the crude and the adjusted association. Sensitivity analyses without missing data and modeling ARDS severity were performed.RESULTS: Among 650 patients, three groups were identified. Patients in the higher, intermediate, and lower groups had a median cumulative fluid balance of 1.98 L (1.27-7.72 L), 0.78 L (0.26-1.27 L), and - 0.35 L (- 6.52-0.26 L), respectively. Higher day 3 cumulative fluid balance was significantly associated with a lower probability of successful ventilation liberation (adjusted hazard ratio 0.86, 95% CI 0.77-0.95, P = 0.0047). Sensitivity analyses showed similar results.CONCLUSIONS: In a cohort of invasively ventilated patients with COVID-19 and ARDS, a higher cumulative fluid balance was associated with a longer ventilation duration, indicating that restricted fluid management in these patients may be beneficial. Trial registration Clinicaltrials.gov ( NCT04346342 ); Date of registration: April 15, 2020.
In samenwerking met het Saxion FabLab Enschede zijn veel ZZP en MKB bedrijven bezig met innovatie. Daarbij is het opgevallen dat er steeds meer aanvragen op het gebied van Health producten binnenkomen, veelal hulpmiddelen. Om deze specifieke groep innovators beter faciliteren is er behoefte aan een Health Innovation FabLab werkwijze, waar een innovatie traject is ontwikkeld waar de disciplines gezondheidzorg, technologie en business ontwikkeling geïntegreerd aan bod komen., Hierdoor moet het mogelijk zijn sneller, betere producten te ontwikkelen. Het betreft het volledige traject van, het opstellen van een correct pakket van eisen, design consideraties binnen de Health sector, prototype development, gebruikstesten en functionele testen , en aspecten die betrekking hebben op het op de markt brengen van het product toegespitst op het MKB. Hierdoor faciliteert het Health Innovation FabLab niet enkel bij met ‘Rapid Prototyping’, maar ook met ‘Rapid Innovation & Realisation’ waardoor de algehele productontwikkeling wordt versneld en time-to-market voor het MKB wordt verminderd. In feite betreft het een crossover van de Topsectoren Creatieve Industrie en Health Sciences & Life. De methodieken en mogelijkheden van de ontwerpers en makers zoals gebruikelijk in het Fablab worden aangevuld en geïntegreerd met kennis en werkwijzen vanuit de zorg en ondernemersschap, aan de hand van twee cases die zijn ingebracht door mkb-bedrijven Pita Medical en B.J.Bulsink beheer. Het betreft respectievelijk de Hermocool-er (ten behoeve van bestrijding van aambeien) en een Respiration-logger (trainer van ademhalingsgewoonten). Beide cases hebben gemeen dat ze de zelfstandigheid van patiënten vorderen en kosten medische zorg reduceren. Aan de hand van de ervaringen met deze cases willen kunnen de behoeften van het MKB m.b.t. innovaties binnen Health in kaart worden gebracht, en een aanzet worden gegeven voor een specifiek ontwikkel traject worden opgezet voor MKB-ers welke samenkomen in het Health Innovation FabLab.