Non-intubated patients with acute respiratory failure due to COVID-19 could benefit from awake proning. Awake proning is an attractive intervention in settings with limited resources, as it comes with no additional costs. However, awake proning remains poorly used probably because of unfamiliarity and uncertainties regarding potential benefits and practical application. To summarize evidence for benefit and to develop a set of pragmatic recommendations for awake proning in patients with COVID-19 pneumonia, focusing on settings where resources are limited, international healthcare professionals from high and low- and middle-income countries (LMICs) with known expertise in awake proning were invited to contribute expert advice. A growing number of observational studies describe the effects of awake proning in patients with COVID-19 pneumonia in whom hypoxemia is refractory to simple measures of supplementary oxygen. Awake proning improves oxygenation in most patients, usually within minutes, and reduces dyspnea and work of breathing. The effects are maintained for up to 1 hour after turning back to supine, and mostly disappear after 6–12 hours. In available studies, awake proning was not associated with a reduction in the rate of intubation for invasive ventilation. Awake proning comes with little complications if properly implemented and monitored. Pragmatic recommendations including indications and contraindications were formulated and adjusted for resource-limited settings. Awake proning, an adjunctive treatment for hypoxemia refractory to supplemental oxygen, seems safe in non-intubated patients with COVID-19 acute respiratory failure. We provide pragmatic recommendations including indications and contraindications for the use of awake proning in LMICs.
Background: Mechanically ventilated patients are at risk of developing inspiratory muscle weakness (IMW), which is associated with failure to wean and poor outcomes. Inspiratory muscle training (IMT) is a recommended intervention during and after extubation but has not been widely adopted in Dutch intensive care units (ICUs). Objectives: The objective of this study was to explore the potential, barriers, and facilitators for implementing IMT as treatment modality for mechanically ventilated patients. Methods: This mixed-method, proof-of-concept study was conducted in a large academic hospital in the Netherlands. An evidence-based protocol for assessing IMW and training was applied to patients ventilated for ≥24 h in the ICU during an 8-month period in 2021. Quantitative data on completed measurements and interventions during and after ICU-stay were collected retrospectively and were analysed descriptively. Qualitative data were collected through semistructured interviews with physiotherapists executing the new protocol. Interview data were transcribed and thematically analysed. Findings: Of the 301 screened patients, 11.6% (n = 35) met the inclusion criteria. Measurements were possible in 94.3% of the participants, and IMW was found in 78.8% of the participants. Ninety-six percent started training in the ICU, and 88.5% continued training after transfer to the ward. Follow-up measurements were achieved in 73.1% of the patients with respiratory muscle weakness. Twelve therapists were interviewed, of whom 41.7% regularly worked in the ICU. When exploring reasons for protocol deviation, three themes emerged: “professional barriers”, “external factors”, and “patient barriers”. Conclusions: Implementation of measurements of and interventions for IMW showed to be challenging in this single centre study. Clinicians' willingness to change their handling was related to beliefs regarding usefulness, effectiveness, and availability of time and material. We recommend that hospitals aiming to implement IMT during or after ventilator weaning consider these professional and organisational barriers for implementation of novel, evidence-based interventions into daily clinical practice.
MULTIFILE
BackgroundHigh-flow nasal oxygen (HFNO) is increasingly used in patients with acute hypoxemic respiratory failure. It is uncertain whether a broadened Berlin definition of acute respiratory distress syndrome (ARDS), in which ARDS can be diagnosed in patients who are not receiving ventilation, results in similar groups of patients receiving HFNO as in patients receiving ventilation.MethodsWe applied a broadened definition of ARDS in a multicenter, observational study in adult critically ill patients with acute hypoxemic respiratory failure due to coronavirus disease 2019 (COVID-19), wherein the requirement for a minimal level of 5 cm H2O PEEP with ventilation is replaced by a minimal level of airflow rate with HFNO, and compared baseline characteristics and outcomes between patients receiving HFNO and patients receiving ventilation. The primary endpoint was ICU mortality. We also compared outcomes in risk for death groups using the PaO2/FiO2 cutoffs as used successfully in the original definition of ARDS. Secondary endpoints were hospital mortality; mortality on days 28 and 90; need for ventilation within 7 days in patients that started with HFNO; the number of days free from HFNO or ventilation; and ICU and hospital length of stay.ResultsOf 728 included patients, 229 patients started with HFNO and 499 patients with ventilation. All patients fulfilled the broadened Berlin definition of ARDS. Patients receiving HFNO had lower disease severity scores and lower PaO2/FiO2 than patients receiving ventilation. ICU mortality was lower in receiving HFNO (22.7 vs 35.6%; p = 0.001). Using PaO2/FiO2 cutoffs for mild, moderate and severe arterial hypoxemia created groups with an ICU mortality of 16.7%, 22.0%, and 23.5% (p = 0.906) versus 19.1%, 37.9% and 41.4% (p = 0.002), in patients receiving HFNO versus patients receiving ventilation, respectively.ConclusionsUsing a broadened definition of ARDS may facilitate an earlier diagnosis of ARDS in patients receiving HFNO; however, ARDS patients receiving HFNO and ARDS patients receiving ventilation have distinct baseline characteristics and mortality rates.Trial registration: The study is registered at ClinicalTrials.gov (identifier NCT04719182).
MULTIFILE