Background: Ventilation with lower positive end–expiratory pressure (PEEP) may cause loss of lung aeration in critically ill invasively ventilated patients. This study investigated whether a systematic lung ultrasound (LUS) scoring system can detect such changes in lung aeration in a study comparing lower versus higher PEEP in invasively ventilated patients without acute respiratory distress syndrome (ARDS). Methods: Single center substudy of a national, multicenter, randomized clinical trial comparing lower versus higher PEEP ventilation strategy. Fifty–seven patients underwent a systematic 12–region LUS examination within 12 h and between 24 to 48 h after start of invasive ventilation, according to randomization. The primary endpoint was a change in the global LUS aeration score, where a higher value indicates a greater impairment in lung aeration. Results: Thirty–three and twenty–four patients received ventilation with lower PEEP (median PEEP 1 (0–5) cm H2O) or higher PEEP (median PEEP 8 (8–8) cm H2O), respectively. Median global LUS aeration scores within 12 h and between 24 and 48 h were 8 (4 to 14) and 9 (4 to 12) (difference 1 (–2 to 3)) in the lower PEEP group, and 7 (2–11) and 6 (1–12) (difference 0 (–2 to 3)) in the higher PEEP group. Neither differences in changes over time nor differences in absolute scores reached statistical significance. Conclusions: In this substudy of a randomized clinical trial comparing lower PEEP versus higher PEEP in patients without ARDS, LUS was unable to detect changes in lung aeration.
Skeletal muscle-related symptoms are common in both acute coronavirus disease (Covid)-19 and post-acute sequelae of Covid-19 (PASC). In this narrative review, we discuss cellular and molecular pathways that are affected and consider these in regard to skeletal muscle involvement in other conditions, such as acute respiratory distress syndrome, critical illness myopathy, and post-viral fatigue syndrome. Patients with severe Covid-19 and PASC suffer from skeletal muscle weakness and exercise intolerance. Histological sections present muscle fibre atrophy, metabolic alterations, and immune cell infiltration. Contributing factors to weakness and fatigue in patients with severe Covid-19 include systemic inflammation, disuse, hypoxaemia, and malnutrition. These factors also contribute to post-intensive care unit (ICU) syndrome and ICU-acquired weakness and likely explain a substantial part of Covid-19-acquired weakness. The skeletal muscle weakness and exercise intolerance associated with PASC are more obscure. Direct severe acute respiratory syndrome coronavirus (SARS-CoV)-2 viral infiltration into skeletal muscle or an aberrant immune system likely contribute. Similarities between skeletal muscle alterations in PASC and chronic fatigue syndrome deserve further study. Both SARS-CoV-2-specific factors and generic consequences of acute disease likely underlie the observed skeletal muscle alterations in both acute Covid-19 and PASC.
The current study analyzed blogs written by four Dutch parents of children with profound intellectual and multiple disabilities, with the aim of deepening the understanding of the parents’ concerns. Thematic analysis was conducted and five main themes were identified: Dealing with uncertainties addressed the impact of unpredictability present in the everyday lives of parents, Love and loss described the complexity of concurrently cherishing the child and grieving various types of loss, Struggling with time, energy and finances detailed imbalances and struggles related to parents’ personal resources, Feeling included in communities and society specified social consequences, and Relating to professional care services reflected on stress and support associated with professional care delivery. The study findings demonstrate how care professionals should acknowledge parents’ vulnerabilities by being aware of their existential distress and empowering parents to exercise control of family thriving.