From the conference paper : "The authors examined how to improve the total (onsite and offsite) labour productivity of production and assembling of fast retrofitting concepts in the Netherlands. The authors analysed the collected data of two NetZero energy renovations in which the initial process were quite traditional. In the first case the labour productivity can increase spectacularly by prefabricating the roof. In the second case the providers modernized the process by working in multi-disciplinary teams. No evidence have been found that working in a multi-disciplinary team can increase the labour productivity but the time for realization did decrease."
DOCUMENT
Due to climate change the frequency of extreme precipitation increases. To reduce the risk of damage by flooding, municipalities will need to retrofit urban areas in a climate-resilient way. To justify this investment, they need insight in possibilities and costs of climate-resilient urban street designs. This chapter focused on how to retrofit characteristic (Dutch) typologies of urban residential areas. For ten cases alternative street layouts were designed with a determination of the life cycle costs and benefits. All designs are resilient to extreme rain events. The results show that most flat urban typologies can easily be retrofitted in a climate-resilient way without additional costs compared to the standard way of retrofitting. Climate proofing sloping areas are highly dependent on the situation downstream. When there is no space downstream to divert the water into waterways or parks, costs to provide storage easily rise above traditional levels for retrofitting. In addition to reducing flood risk, for each case one variant includes resilience to extreme heat events making use of green. The life cycle costs and benefits of the green variants showed that especially green designs in high-density urban areas result in a better value for money.
MULTIFILE
This book of examples suggests a variety of options for easy and accessible climate-resilient retrofitting of residential areas. The case studies for a set of common streets in the Netherlands will match urban settings in other countries. The examples show that effective climate-resilient retrofitting is usually quite simple and does not necessarily incur higher costs than traditional approaches, particularly in flat areas. An examination of typical Dutch urban street designs shows how climate resilience can be incorporated under different conditions while keeping costs down with retrofitting. We have investigated the effects of four retrofitting variants and specified their cost and benefits, applying a typology of common residential street characteristics. We sincerely hope these case studies inspire you to get started in your own town, city and country, because the climate is right up your street.
DOCUMENT
An enormous challenge has risen regarding our existing housing stock, as the result of ambitious agreements to reduce global carbon emissions. Until now the focus has been mostly on improving energy efficiency technically by ameliorating the energy performance of the building envelope. Insulation, controlled ventilation, new services and devices are deployed, saving and harvesting energy. New building components and production processes have been developed to smoothen obstacles in the role-out of large-scale implementation of these measures. Also effort has been put into non-technical solutions e.g. new financial arrangements, standards and business models. This has resulted in several successful pilots in the EU to retrofit dwellings towards net-zero energy levels. Still, large-scale implementation, especially targeted at owner-occupied dwellings is lagging behind. The hypothesis is that this is due to the fact that the challenge is still mainly addressed by following concepts that belong to the paradigm of the second industrial revolution. In this paradigm central coordination, proprietary development and vertical up-scaling are key and dwellers are neglected as an essential group of stakeholders in the transformation of their dwellings. This paper will reflect on the principles used in retrofitting using the successful Dutch programme of the Stroomversnelling as a case study. What are the consequences, especially for the position of dwellers, if we rethink the developments from concepts that belong to the paradigm of the third industrial revolution? In the reflection on necessary and possible future developments experiences and insights from Open Building will be used.
DOCUMENT
In this book of examples we present possible implementations of straightforward and manageable climate-resilient ideas and options for residential streets. Examples from ordinary Dutch street views show how climate resilience can be implemented with simple solutions and how this does not need to be more costly than traditional measures, particularly in flat areas (such as we often find in the Netherlands). This observation is based on comparative studies across various Dutch cities. We hope that the examples will inspire you to find ways to implementclimate-resilient measures in your city, because the climate is right up your street.
DOCUMENT
Although there is an array of technical solutions available for retrofitting the building stock, the uptake of these by owner‐occupants in home improvement activities is lagging. Energy performance improvement is not included in maintenance, redecoration, and/or upgrading activities on a scale necessary to achieve the CO2 reduction aimed for in the built environment. Owner‐occupants usually adapt their homes in response to everyday concerns, such as having enough space available, increasing comfort levels, or adjusting arrangements to future‐proof their living conditions. Home energy improvements should be offered accordingly. Retrofit providers typically offer energy efficiency strategies and/or options for renewable energy generation only and tend to gloss over home comfort and homemaking as key considerations in decision‐making for home energy improvement. In fact, retrofit providers struggle with the tension between customisation requirements from private homeowners and demand aggregation to streamline their supply chains and upscale their retrofit projects. Customer satisfaction is studied in three different Dutch approaches to retrofit owner‐occupied dwellings to increase energy efficiency. For the analysis, a customer satisfaction framework is used that makes a distinction between satisfiers, dissatisfiers, criticals, and neutrals. This framework makes it possible to identify and structure different relevant factors from the perspective of owner‐occupants, allows visualising gaps with the professional perspective, and can assist to improve current propositions.
MULTIFILE
Due to climate change the frequency of extreme precipitation is set to increase. To reduce the risk of damage, Dutch municipalities will need to retrofit the urban areas in a climate resilient (CR) way. To justify this investment, they need evidence for the possibilities of CR urban street designs and insight into the costs. For characteristic Dutch typologies of urban residential areas we have investigated how to retrofit the urban area. For 10 cases we designed alternatives of street lay-outs and determined the life cycle costs and benefits. This showed that most flat Dutch urban typologies can easily be retrofitted in a CR way without additional costs (compared to the standard designs).
DOCUMENT
Population ageing has become a domain of international discussions and research throughout the spectrum of disciplines including housing, urban planning, and real estate. Older people are encouraged to continue living in their homes in their familiar environment, and this is referred to as “ageing-in-place”. Enabling one to age-in-place requires new housing arrangements that facilitate and enable older adults to live comfortably into old age, preferably with others. Innovative examples are provided from a Dutch social housing association, illustrating a new approach to environmental design that focuses more on building new communities in conjunction with the building itself, as opposed to the occupational therapeutic approaches and environmental support. Transformation projects, referred to as “Second Youth Experiments”, are conducted using the Røring method, which is based on the principles of co-creation. De Benring in Voorst, The Netherlands, is provided as a case study of an innovative transformation project. This project shows how social and technological innovations can be integrated in the retrofitting of existing real estate for older people. It leads to a flexible use of the real estate, which makes the building system- and customer preference proof. Original article at: https://doi.org/10.3390/buildings8070089 © 2018 by the authors. Licensee MDPI.
MULTIFILE
Smart home technologies are a large potential market for the construction and building services industry. This chapter discusses the topics consultants, installers, and suppliers of home automation systems encounter when working in the field. Improved communication skills and more flexible approaches to the design and installing of building services leads to many new opportunities for new products and services. There are a large number of requirements from the perspective of architectural design and building services engineering, which relate to the infrastructure that is needed for smart homes. An overview of these electrical engineering and ICT requirements is discussed. When working with clients, it is important to consider the additional set of rules of working in their homes. Clients may have additional needs in the field of home modifications that can also be addressed when doing retrofitting projects. An outline of steps to get stared and essential questions for professional care organization is given.
LINK