De Risk Factory is een veiligheidseducatiecentrum waar basisschoolleerlingen en groepen met een verhoogd veiligheidsrisico veiligheidsbewust worden gemaakt door realistische scenario’s aan den lijve te ondervinden. Het doel van de Risk Factory is om bezoekers kennis te geven van mogelijke veiligheidsrisico’s en de zelfredzaamheid van deze bezoekers te vergroten. Dit onderzoek is erop gericht om te kijken in hoeverre een bezoek aan de Risk Factory bijdraagt aan de mate van zelfredzaamheid van bezoekers. Uit het onderzoek naar de effectiviteit van de Risk Factory blijkt dat een bezoek aan de Risk Factory leidt tot een hoog veiligheidsbewustzijn en een grotere intentie tot zelfredzaamheid onder kinderen uit groep 7 en 8 van de basisschool. De Risk Factory levert een belangrijke bijdrage aan het voorbereiden van kinderen op mogelijke onveilige situaties in de omgeving. Ondanks de positieve resultaten verkregen in dit onderzoek, is het nog wel van belang om na te gaan in hoeverre het ‘aan den lijve ondervinden’ van realistische scenario’s in de Risk Factory doorslaggevend is in het vergroten van de zelfredzaamheid. Het vergelijken van het effect van een bezoek aan de Risk Factory met het effect van ‘standaard’ voorlichtingsbijeenkomsten verdient daarom aanbeveling.
MULTIFILE
Existing studies offer very limited insight into how sellers may reduce consumers' perceived risk in order to make consumer-to-consumer electronic marketplaces more successful. Contrary to these studies, the empirical investigation reported in this article acknowledges the role of sellers in enabling these computer-mediated transaction platforms. The study focuses on how information provided by sellersabout themselves (i.e., seller information) and about their products (i.e., product information) can function as risk reduction signals and how these affect a buyer's inclination to purchase. Combining signaling theory with perceived risk theory, the authors present a research model that they test using structural equation modeling with data collected in two different electronic marketplaces, includingeBay.nl. The results indicate that while product and seller information are indeed important risk reduction signals, and as such can play an important role in stimulating purchasing, the risk reduction potential of these forms of information differs across the studied risk types. This article discusses these findings and explains how they contribute to signaling theory and perceived risk theory. Based on the findings, several practical implications for sellers active in electronic marketplaces and for the intermediaries operating these transaction systems are described.
DOCUMENT
Currently, promising new tools are under development that will enable crime scene investigators to analyze fingerprints or DNA-traces at the crime scene. While these technologies could help to find a perpetrator early in the investigation, they may also strengthen confirmation bias when an incorrect scenario directs the investigation this early. In this study, 40 experienced Crime scene investigators (CSIs) investigated a mock crime scene to study the influence of rapid identification technologies on the investigation. This initial study shows that receiving identification information during the investigation results in more accurate scenarios. CSIs in general are not as much reconstructing the event that took place, but rather have a “who done it routine.” Their focus is on finding perpetrator traces with the risk of missing important information at the start of the investigation. Furthermore, identification information was mostly integrated in their final scenarios when the results of the analysis matched their expectations. CSIs have the tendency to look for confirmation, but the technology has no influence on this tendency. CSIs should be made aware of the risks of this strategy as important offender information could be missed or innocent people could be wrongfully accused.
DOCUMENT
The Dutch main water systems face pressing environmental, economic and societal challenges due to climatic changes and increased human pressure. There is a growing awareness that nature-based solutions (NBS) provide cost-effective solutions that simultaneously provide environmental, social and economic benefits and help building resilience. In spite of being carefully designed and tested, many projects tend to fail along the way or never get implemented in the first place, wasting resources and undermining trust and confidence of practitioners in NBS. Why do so many projects lose momentum even after a proof of concept is delivered? Usually, failure can be attributed to a combination of eroding political will, societal opposition and economic uncertainties. While ecological and geological processes are often well understood, there is almost no understanding around societal and economic processes related to NBS. Therefore, there is an urgent need to carefully evaluate the societal, economic, and ecological impacts and to identify design principles fostering societal support and economic viability of NBS. We address these critical knowledge gaps in this research proposal, using the largest river restoration project of the Netherlands, the Border Meuse (Grensmaas), as a Living Lab. With a transdisciplinary consortium, stakeholders have a key role a recipient and provider of information, where the broader public is involved through citizen science. Our research is scientifically innovative by using mixed methods, combining novel qualitative methods (e.g. continuous participatory narrative inquiry) and quantitative methods (e.g. economic choice experiments to elicit tradeoffs and risk preferences, agent-based modeling). The ultimate aim is to create an integral learning environment (workbench) as a decision support tool for NBS. The workbench gathers data, prepares and verifies data sets, to help stakeholders (companies, government agencies, NGOs) to quantify impacts and visualize tradeoffs of decisions regarding NBS.
Structural colour (SC) is created by light interacting with regular nanostructures in angle-dependent ways resulting in vivid hues. This form of intense colouration offers commercial and industrial benefits over dyes and other pigments. Advantages include durability, efficient use of light, anti-fade properties and the potential to be created from low cost materials (e.g. cellulose fibres). SC is widely found in nature, examples include butterflies, squid, beetles, plants and even bacteria. Flavobacterium IR1 is a Gram-negative, gliding bacterium isolated from Rotterdam harbour. IR1 is able to rapidly self-assemble into a 2D photonic crystal (a form of SC) on hydrated surfaces. Colonies of IR1 are able to display intense, angle-dependent colours when illuminated with white light. The process of assembly from a disordered structure to intense hues, that reflect the ordering of the cells, is possible within 10-20 minutes. This bacterium can be stored long-term by freeze drying and then rapidly activated by hydration. We see these properties as suiting a cellular reporter system quite distinct from those on the market, SC is intended to be “the new Green Fluorescent Protein”. The ability to understand the genomics and genetics of SC is the unique selling point to be exploited in product development. We propose exploiting SC in IR1 to create microbial biosensors to detect, in the first instance, volatile compounds that are damaging to health and the environment over the long term. Examples include petroleum or plastic derivatives that cause cancer, birth defects and allergies, indicate explosives or other insidious hazards. Hoekmine, working with staff and students within the Hogeschool Utrecht and iLab, has developed the tools to do these tasks. We intend to create a freeze-dried disposable product (disposables) that, when rehydrated, allow IR1 strains to sense and report multiple hazardous vapours alerting industries and individuals to threats. The data, visible as brightly coloured patches of bacteria, will be captured and quantified by mobile phone creating a system that can be used in any location by any user without prior training. Access to advice, assay results and other information will be via a custom designed APP. This work will be performed in parallel with the creation of a business plan and market/IP investigation to prepare the ground for seed investment. The vision is to make a widely usable series of tests to allow robust environmental monitoring for all to improve the quality of life. In the future, this technology will be applied to other areas of diagnostics.
DISTENDER will provide integrated strategies by building a methodological framework that guide the integration of climate change(CC) adaptation and mitigation strategies through participatory approaches in ways that respond to the impacts and risks of climatechange (CC), supported by quantitative and qualitative analysis that facilitates the understanding of interactions, synergies and tradeoffs.Holistic approaches to mitigation and adaptation must be tailored to the context-specific situation and this requires a flexibleand participatory planning process to ensure legitimate and salient action, carried out by all important stakeholders. DISTENDER willdevelop a set of multi-driver qualitative and quantitative socio-economic-climate scenarios through a facilitated participatory processthat integrates bottom-up knowledge and locally-relevant drivers with top-down information from the global European SharedSocioeconomic Pathways (SSPs) and downscaled Representative Concentration Pathways (RCPs) from IPCC. A cross-sectorial andmulti-scale impact assessment modelling toolkit will be developed to analyse the complex interactions over multiple sectors,including an economic evaluation framework. The economic impact of the different efforts will be analyse, including damage claimsettlement and how do sectoral activity patterns change under various scenarios considering indirect and cascading effects. It is aninnovative project combining three key concepts: cross-scale, integration/harmonization and robustness checking. DISTENDER willfollow a pragmatic approach applying methodologies and toolkits across a range of European case studies (six core case studies andfive followers) that reflect a cross-section of the challenges posed by CC adaptation and mitigation. The knowledge generated byDISTENDER will be offered by a Decision Support System (DSS) which will include guidelines, manuals, easy-to-use tools andexperiences from the application of the cases studies.