In this chapter, we discuss the education of secondary school mathematics teachers in the Netherlands. There are different routes for qualifying as a secondary school mathematics teacher. These routes target different student teacher populations, ranging from those who have just graduated from high school to those who have already pursued a career outside education or working teachers who want to qualify for teaching in higher grades. After discussing the complex structure this leads to, we focus on the aspects that these different routes have in common. We point out typical characteristics of Dutch school mathematics and discuss the aims and challenges in teacher education that result from this. We give examples of different approaches used in Dutch teacher education, which we link to a particular model for designing vocational and professional learning environments.We end the chapter with a reflection on the current situation.
LINK
We are currently in a transition moving from a linear economy grounded on economic value maximization based on material transformation to a circular economy. Core of this transition is organising value preservation from various yet interlinked perspectives. The underlying fundamental shift is to move away from mere financial value maximization towards multiple value creation (WCED, 1987; Jonker, 2014; Raworth, 2017). This implies moving from mere economic value creation, to simultaneously and in a balanced way creating ecological and social value. A parallel development supporting this transition can be observed in accounting & control. Elkington (1994) introduced the triple bottom line (TBL) concept, referring to the economic, ecological and social impact of companies. The TBL should be seen more as a conceptual way of thinking, rather than a practical innovative accounting tool to monitor and control sustainable value (Rambaud & Richard, 2015). However, it has inspired accounting & control practitioners to develop accounting tools that not only aim at economic value (‘single capital’ accounting) but also at multiple forms of capital (‘multi capital’ accounting or integrated reporting). This has led to a variety of integrated reporting platforms such as Global Reporting Initiative (GRI), International Integrated Reporting Framework (IIRC), Dow Jones Sustainable Indexes (DJSI), True Costing, Reporting 3.0, etc. These integrated reporting platforms and corresponding accounting concepts, can be seen as a fundament for management control systems focussing on multiple value creation. This leads to the following research question: How are management control systems designed in practice to drive multiple value creation?
MULTIFILE
In L1 grammar teaching, teachers often struggle with the students’ conceptual understanding of the subject matter. Frequently, students do not acquire an in-depth understanding of grammar, and they seem generally incapable of reasoning about grammatical problems. Some scholars have argued that an in-depth understanding of grammar requires making connections between concepts from traditional grammar and underlying metaconcepts from linguistic theory. In the current study, we evaluate an intervention aiming to do this, following up on a previous study that found a significant effect for such an approach in university students of Dutch Language and Literature (d = 0.62). In the current study, 119 Dutch secondary school students’ grammatical reasonings (N=684) were evaluated by language teachers, teacher educators and linguists pre and post intervention using comparative judgement. Results indicate that the intervention significantly boosted the students’ ability to reason grammatically (d = 0.46), and that many students can reason based on linguistic metaconcepts. The study also shows that reasoning based on explicit underlying linguistic metaconcepts and on explicit concepts from traditional grammar is more favored by teachers and (educational) linguists than reasoning without explicit (meta)concepts. However, some students show signs of incomplete acquisition of the metaconcepts. The paper discusses explanations for this incomplete acquisition.
DOCUMENT
Effectiveness of Supported Education for students with mental health problems, an experimental study.The onset of mental health problems generally occurs between the ages of 16 and 23 – the years in which young people follow postsecondary education, which is a major channel in ourso ciety to prepare for a career and enhance life goals. Several studies have shown that students with mental health problems have a higher chance of early school leaving. Supported Education services have been developed to support students with mental health to remain at school. The current project aims to study the effect of an individually tailored Supported Education intervention on educational and mental health outcomes of students with mental health problems at a university of applied sciences and a community college. To that end, a mixed methods design will be used. This design combines quantitative research (Randomized Controlled Trial) with qualitative research (focus groups, monitoring, interviews). 100 students recruited from the two educational institutes will be randomly allocated to either the intervention or control group.
The consistent demand for improving products working in a real-time environment is increasing, given the rise in system complexity and urge to constantly optimize the system. One such problem faced by the component supplier is to ensure their product viability under various conditions. Suppliers are at times dependent on the client’s hardware to perform full system level testing and verify own product behaviour under real circumstances. This slows down the development cycle due to dependency on client’s hardware, complexity and safety risks involved with real hardware. Moreover, in the expanding market serving multiple clients with different requirements can be challenging. This is also one of the challenges faced by HyMove, who are the manufacturer of Hydrogen fuel cells module (https://www.hymove.nl/). To match this expectation, it starts with understanding the component behaviour. Hardware in the loop (HIL) is a technique used in development and testing of the real-time systems across various engineering domain. It is a virtual simulation testing method, where a virtual simulation environment, that mimics real-world scenarios, around the physical hardware component is created, allowing for a detailed evaluation of the system’s behaviour. These methods play a vital role in assessing the functionality, robustness and reliability of systems before their deployment. Testing in a controlled environment helps understand system’s behaviour, identify potential issues, reduce risk, refine controls and accelerate the development cycle. The goal is to incorporate the fuel cell system in HIL environment to understand it’s potential in various real-time scenarios for hybrid drivelines and suggest secondary power source sizing, to consolidate appropriate hybridization ratio, along with optimizing the driveline controls. As this is a concept with wider application, this proposal is seen as the starting point for more follow-up research. To this end, a student project is already carried out on steering column as HIL