In dit onderzoek wordt eerst de theorie op het terrein van risicomanagement bij inzet van ICT op een rij gezet. Vervolgens wordt de benadering gekozen, die bij het empirisch onderzoek is gehanteerd. De keuze is hierbij gevallen op de benadering van risico bij inzet van ICT van Westerman c.s..
Pokémon Go, Facebook check-ins, Google Maps, public transport apps and especially smartphone apps are increasingly becoming traceable and locatable. As ‘check-in’, features in social media and games grow in popularity they pinpoint users in relation to everything else in the network, making physical context an essential input for online interactions. But what are the practical consequences of the increased proliferation of devices that can determine our location? Could one say that surveillance is already taken for granted as we passively provide our coordinates to others?
MULTIFILE
In this paper we propose a novel approach for validating a simulation model for a passengers' airport terminal. The validation approach is based on a "historical data" and "model-to-model" validation approach, and the novelty is represented by the fact that the model used as comparison uses historical data from different data sources and technologies. The proposed validation approach , which is presented as part of the IMHOTEP project, implements various data fusion and data analytics methods to generate the passenger "Activity-Travel-Diary", which is the model that is then compared with the results from the simulation model. The data used for developing the "Activity-Travel-Diary" comes from different sources and technologies such as: passengers data (personal mobile phone, apps), airport data (airport Wi-Fi, GPS, scanning facilities), and flight Information (flight schedules, gate allocation etc.). The simulation model is based on an agent-based simulation paradigm and includes all the passengers flows and operations within a terminal airport. The proposed validation approach is implemented in a real-life case study, Palma de Mallorca Airport, and preliminary results of the validation (calibration) process of the simulation model are presented.