COVID-19 arrived in the world suddenly and unexpectedly. It caused major disruptions at economical, operational and other levels. In the case of flight traffic, the operations were reduced to 10% of their original levels. The question after COVID-19 is how to restart the operations and how to keep the balance between safety and capacity. In this paper we present an analysis using simulation techniques for understanding the impact in a security area of an important airport in Latin America; the airport of Mexico City. The results allow to illustrate the potential congestion given by the implemented covid-19 restriction, even when the traffic recovers only by 25% of the pre-covid-19 traffic. The congestion can be mitigated by applying some layout changes (snake queue vs parallel queue) and when more capacity is added to the system (extra security line). The results will raise situational awareness for airport stakeholders when implementing the actions suggested by different international institutions like WHO, IATA or ICAO.
Assigning gates to flights considering physical, operational, and temporal constraints is known as the Gate Assignment Problem. This article proposes the novelty of coupling a commercial stand and gate allocation software with an off-the-grid optimization algorithm. The software provides the assignment costs, verifies constraints and restrictions of an airport, and provides an initial allocation solution. The gate assignment problem was solved using a genetic algorithm. To improve the robustness of the allocation results, delays and early arrivals are predicted using a random forest regressor, a machine learning technique and in turn they are considered by the optimization algorithm. Weather data and schedules were obtained from Zurich International Airport. Results showed that the combination of the techniques result in more efficient and robust solutions with higher degree of applicability than the one possible with the sole use of them independently.
Paris Charles de Gaulle Airport was the second European airport in terms of traffic in 2019, having transported 76.2 million passengers. Its large infrastructures include four runways, a large taxiway network, and 298 aircraft parking stands (131 contact) among three terminals. With the current pandemic in place, the European air traffic network has declined by −65% flights when compared with 2019 traffic (pre-COVID-19), having a severe negative impact on the aviation industry. More and more often taxiways and runways are used as parking spaces for aircraft as consequence of the drastic decrease in air traffic. Furthermore, due to safety reasons, passenger terminals at many airports have been partially closed. In this work we want to study the effect of the reduction in the physical facilities at airports on airspace and airport capacity, especially in the Terminal Manoeuvring Area (TMA) airspace, and in the airport ground side. We have developed a methodology that considers rare events such as the current pandemic, and evaluates reduced access to airport facilities, considers air traffic management restrictions and evaluates the capacity of airport ground side and airspace. We built scenarios based on real public information on the current use of the airport facilities of Paris Charles de Gaulle Airport and conducted different experiments based on current and hypothetical traffic recovery scenarios. An already known optimization metaheuristic was implemented for optimizing the traffic with the aim of avoiding airspace conflicts and avoiding capacity overloads on the ground side. The results show that the main bottleneck of the system is the terminal capacity, as it starts to become congested even at low traffic (35% of 2019 traffic). When the traffic starts to increase, a ground delay strategy is effective for mitigating airspace conflicts; however, it reveals the need for additional runways