Background and purpose: Automatic approaches are widely implemented to automate dose optimization in radiotherapy treatment planning. This study systematically investigates how to configure automatic planning in order to create the best possible plans. Materials and methods: Automatic plans were generated using protocol based automatic iterative optimization. Starting from a simple automation protocol which consisted of the constraints for targets and organs at risk (OAR), the performance of the automatic approach was evaluated in terms of target coverage, OAR sparing, conformity, beam complexity, and plan quality. More complex protocols were systematically explored to improve the quality of the automatic plans. The protocols could be improved by adding a dose goal on the outer 2 mm of the PTV, by setting goals on strategically chosen subparts of OARs, by adding goals for conformity, and by limiting the leaf motion. For prostate plans, development of an automated post-optimization procedure was required to achieve precise control over the dose distribution. Automatic and manually optimized plans were compared for 20 head and neck (H&N), 20 prostate, and 20 rectum cancer patients. Results: Based on simple automation protocols, the automatic optimizer was not always able to generate adequate treatment plans. For the improved final configurations for the three sites, the dose was lower in automatic plans compared to the manual plans in 12 out of 13 considered OARs. In blind tests, the automatic plans were preferred in 80% of cases. Conclusions: With adequate, advanced, protocols the automatic planning approach is able to create high-quality treatment plans.
DOCUMENT
In recent years, a step change has been seen in the rate of adoption of Industry 4.0 technologies by manufacturers and industrial organizations alike. This article discusses the current state of the art in the adoption of Industry 4.0 technologies within the construction industry. Increasing complexity in onsite construction projects coupled with the need for higher productivity is leading to increased interest in the potential use of Industry 4.0 technologies. This article discusses the relevance of the following key Industry 4.0 technologies to construction: data analytics and artificial intelligence, robotics and automation, building information management, sensors and wearables, digital twin, and industrial connectivity. Industrial connectivity is a key aspect as it ensures that all Industry 4.0 technologies are interconnected allowing the full benefits to be realized. This article also presents a research agenda for the adoption of Industry 4.0 technologies within the construction sector, a three-phase use of intelligent assets from the point of manufacture up to after build, and a four-staged R&D process for the implementation of smart wearables in a digital enhanced construction site.
DOCUMENT
The performance of neural electrodes in physiological fluid, especially in chronic use, is critical for the success of functional electrical stimulation devices. Tips of the Utah electrode arrays (UEAs) were coated with sputtered iridium oxide film (SIROF) and activated iridium oxide film (AIROF) to study the degradation during charge injection consistent with functional electrical stimulation (FES). The arrays were subjected to continuous biphasic, cathodal first, charge balanced (with equal cathodal and anodal pulse widths) current pulses for 7 h (>1 million pulses) at a frequency of 50 Hz. The amplitude and width of the current pulses were varied to determine the damage threshold of the coatings. Degradation was characterized by scanning electron microscopy, inductively coupled plasma mass spectrometry, electrochemical impedance spectroscopy and cyclic voltammetry. The injected charge and charge density per phase were found to play synergistic role in damaging the electrodes. The damage threshold for SIROF coated electrode tips of the UEA was between 60 nC with a charge density of 1.9 mC/cm2 per phase and 80 nC with a charge density of 1.0 mC/cm2 per phase. While for AIROF coated electrode tips, the threshold was between 40 nC with a charge density of 0.9 mC/cm2 per phase and 50 nC with a charge density of 0.5 mC/cm2 per phase. Compared to AIROF, SIROF showed higher damage threshold and therefore is highly recommended to be used as a stimulation material.
DOCUMENT
Zuyd University and partners will develop novel coatings that contribute to a reduction in energy consumption of houses and buildings. The built environment currently consumes 46% of all energy, mainly for heating and cooling. A strong reduction is required as part of the transition towards sustainable energy. This is expressed by ambitious targets set by the Parkstad region, which has set itself the target to be energy neutral in 2040. For the Window of the Future Zuyd University (lectoraat Nanostructured Materials) and DWI (post-doc) aims to develop infrared regulating coatings that keep the heat inside in winter and outside in summer. These coatings are expected to strongly contribute to reduction of energy consumption. We will develop coating materials for application on glass windows, which are transparent for visible light to allow maximal daylight entering the building, and simultaneously regulate the transmission and reflection of IR heat. Kriya and Physee (SMEs) will advise Zuyd on technical and economic challenges related to the development of IR regulating glass windows. OMT Solutions (SME) and SGS Intron will advise on characterization and the performance validation. The need for such windows is confirmed by TNO/The Brightlands Materials Center as central challenge in their Optoelectronics program. They contribute largely to this project. Large demonstrator windows will be coated, and installed in test houses for real-life testing and quantification of the energy reduction. Zuyd (lectoraat Solar Energy in the Built Environment) will quantify the impact of smart IR regulating windows on the energy transition by comparing their impact to other available technologies, e.g. solar cells. In this quantification, Zuyd will focus on the Parkstad region. Together with Parkstad and Maastricht University (Ph.D. student), Zuyd will also quantify the socio-economic impact, and promote the societal acceptance of smart IR regulating windows.