Dynamic energy contracts, offering hourly varying day-ahead prices for electricity, create opportunities for a residential Battery Energy Storage System (BESS) to not just optimize the self-consumption of solar energy but also capitalize on price differences. This work examines the financial potential and impact on the self-consumption of a residential BESS that is controlled based on these dynamic energy prices for PV-equipped households in the Netherlands, where this novel type of contract is available. Currently, due to the Dutch Net Metering arrangement (NM) for PV panels, there is no financial incentive to increase self-consumption, but policy shifts are debated, affecting the potential profitability of a BESS. In the current situation, the recently proposed NM phase-out and the general case without NM are studied using linear programming to derive optimal control strategies for these scenarios. These are used to assess BESS profitability in the latter cases combined with 15 min smart meter data of 225 Dutch households to study variations in profitability between households. It follows that these variations are linked to annual electricity demand and feed-in pre-BESS-installation. A residential BESS that is controlled based on day-ahead prices is currently not generally profitable under any of these circumstances: Under NM, the maximum possible annual yield for a 5 kWh/3.68 kW BESS with day-ahead prices as in 2023 is EUR 190, while in the absence of NM, the annual yield per household ranges from EUR 93 to EUR 300. The proposed NM phase-out limits the BESS’s profitability compared to the removal of NM.
Smart home technologies are a large potential market for the construction and building services industry. This chapter discusses the topics consultants, installers, and suppliers of home automation systems encounter when working in the field. Improved communication skills and more flexible approaches to the design and installing of building services leads to many new opportunities for new products and services. There are a large number of requirements from the perspective of architectural design and building services engineering, which relate to the infrastructure that is needed for smart homes. An overview of these electrical engineering and ICT requirements is discussed. When working with clients, it is important to consider the additional set of rules of working in their homes. Clients may have additional needs in the field of home modifications that can also be addressed when doing retrofitting projects. An outline of steps to get stared and essential questions for professional care organization is given.
LINK