In this paper we present a methodology to measure the energy consumption of software. The methodology is based on detailed monitoring of power usage of hardware components. We explain our lab setup after which we apply the methodology to different pieces of DNS resolver software. Through this case study we demonstrate some of the uses of our methodology, as it can be used to determine which software performs the tasks at hand in the most energy efficient way, what the influence of software configuration can be, etcetera.
DOCUMENT
Uit het rapport: "Deze onderzoeksagenda is tot stand gebracht door de lectoren die samenwerken in het Nationaal Lectoren Platform Urban Energy. Alle betrokkenen bij het platform zijn in staat gesteld om bij te dragen aan de tekst, speciale dank daarbij voor de bijdragen en commentaren vanuit de TKI Urban Energy en de HCA topsector Energie."
DOCUMENT
The built environment requires energy-flexible buildings to reduce energy peak loads and to maximize the use of (decentralized) renewable energy sources. The challenge is to arrive at smart control strategies that respond to the increasing variations in both the energy demand as well as the variable energy supply. This enables grid integration in existing energy networks with limited capacity and maximises use of decentralized sustainable generation. Buildings can play a key role in the optimization of the grid capacity by applying demand-side management control. To adjust the grid energy demand profile of a building without compromising the user requirements, the building should acquire some energy flexibility capacity. The main ambition of the Brains for Buildings Work Package 2 is to develop smart control strategies that use the operational flexibility of non-residential buildings to minimize energy costs, reduce emissions and avoid spikes in power network load, without compromising comfort levels. To realise this ambition the following key components will be developed within the B4B WP2: (A) Development of open-source HVAC and electric services models, (B) development of energy demand prediction models and (C) development of flexibility management control models. This report describes the developed first two key components, (A) and (B). This report presents different prediction models covering various building components. The models are from three different types: white box models, grey-box models, and black-box models. Each model developed is presented in a different chapter. The chapters start with the goal of the prediction model, followed by the description of the model and the results obtained when applied to a case study. The models developed are two approaches based on white box models (1) White box models based on Modelica libraries for energy prediction of a building and its components and (2) Hybrid predictive digital twin based on white box building models to predict the dynamic energy response of the building and its components. (3) Using CO₂ monitoring data to derive either ventilation flow rate or occupancy. (4) Prediction of the heating demand of a building. (5) Feedforward neural network model to predict the building energy usage and its uncertainty. (6) Prediction of PV solar production. The first model aims to predict the energy use and energy production pattern of different building configurations with open-source software, OpenModelica, and open-source libraries, IBPSA libraries. The white-box model simulation results are used to produce design and control advice for increasing the building energy flexibility. The use of the libraries for making a model has first been tested in a simple residential unit, and now is being tested in a non-residential unit, the Haagse Hogeschool building. The lessons learned show that it is possible to model a building by making use of a combination of libraries, however the development of the model is very time consuming. The test also highlighted the need for defining standard scenarios to test the energy flexibility and the need for a practical visualization if the simulation results are to be used to give advice about potential increase of the energy flexibility. The goal of the hybrid model, which is based on a white based model for the building and systems and a data driven model for user behaviour, is to predict the energy demand and energy supply of a building. The model's application focuses on the use case of the TNO building at Stieltjesweg in Delft during a summer period, with a specific emphasis on cooling demand. Preliminary analysis shows that the monitoring results of the building behaviour is in line with the simulation results. Currently, development is in progress to improve the model predictions by including the solar shading from surrounding buildings, models of automatic shading devices, and model calibration including the energy use of the chiller. The goal of the third model is to derive recent and current ventilation flow rate over time based on monitoring data on CO₂ concentration and occupancy, as well as deriving recent and current occupancy over time, based on monitoring data on CO₂ concentration and ventilation flow rate. The grey-box model used is based on the GEKKO python tool. The model was tested with the data of 6 Windesheim University of Applied Sciences office rooms. The model had low precision deriving the ventilation flow rate, especially at low CO2 concentration rates. The model had a good precision deriving occupancy from CO₂ concentration and ventilation flow rate. Further research is needed to determine if these findings apply in different situations, such as meeting spaces and classrooms. The goal of the fourth chapter is to compare the working of a simplified white box model and black-box model to predict the heating energy use of a building. The aim is to integrate these prediction models in the energy management system of SME buildings. The two models have been tested with data from a residential unit since at the time of the analysis the data of a SME building was not available. The prediction models developed have a low accuracy and in their current form cannot be integrated in an energy management system. In general, black-box model prediction obtained a higher accuracy than the white box model. The goal of the fifth model is to predict the energy use in a building using a black-box model and measure the uncertainty in the prediction. The black-box model is based on a feed-forward neural network. The model has been tested with the data of two buildings: educational and commercial buildings. The strength of the model is in the ensemble prediction and the realization that uncertainty is intrinsically present in the data as an absolute deviation. Using a rolling window technique, the model can predict energy use and uncertainty, incorporating possible building-use changes. The testing in two different cases demonstrates the applicability of the model for different types of buildings. The goal of the sixth and last model developed is to predict the energy production of PV panels in a building with the use of a black-box model. The choice for developing the model of the PV panels is based on the analysis of the main contributors of the peak energy demand and peak energy delivery in the case of the DWA office building. On a fault free test set, the model meets the requirements for a calibrated model according to the FEMP and ASHRAE criteria for the error metrics. According to the IPMVP criteria the model should be improved further. The results of the performance metrics agree in range with values as found in literature. For accurate peak prediction a year of training data is recommended in the given approach without lagged variables. This report presents the results and lessons learned from implementing white-box, grey-box and black-box models to predict energy use and energy production of buildings or of variables directly related to them. Each of the models has its advantages and disadvantages. Further research in this line is needed to develop the potential of this approach.
DOCUMENT
Dealing with and maintaining high-quality standards in the design and construction phases is challenging, especially for on-site construction. Issues like improper implementation of building components and poor communication can widen the gap between design specifications and actual conditions. To prevent this, particularly for energy-efficient buildings, it is vital to develop resilient, sustainable strategies. These should optimize resource use, minimize environmental impact, and enhance livability, contributing to carbon neutrality by 2050 and climate change mitigation. Traditional post-occupancy evaluations, which identify defects after construction, are impractical for addressing energy performance gaps. A new, real-time inspection approach is necessary throughout the construction process. This paper suggests an innovative guideline for prefabricated buildings, emphasizing digital ‘self-instruction’ and ‘self-inspection’. These procedures ensure activities impacting quality adhere to specific instructions, drawings, and 3D models, incorporating the relevant acceptance criteria to verify completion. This methodology, promoting alignment with planned energy-efficient features, is supported by BIM-based software and Augmented Reality (AR) tools, embodying Industry 4.0 principles. BIM (Building Information Modeling) and AR bridge the gap between virtual design and actual construction, improving stakeholder communication and enabling real-time monitoring and adjustments. This integration fosters accuracy and efficiency, which are key for energy-efficient and nearly zero-energy buildings, marking a shift towards a more precise, collaborative, and environmentally sensible construction industry.
DOCUMENT
Dit essay geeft een systeemvisie op het ontwikkelen van embedded software voor slimme systemen: (mobiele) robots en sensornetwerken.
DOCUMENT
The shortage for ICT personal in the EU is large and expected to increase. The aim of this research is to contribute to a better understanding of the roles and competences needed, so that education curricula can be better aligned to evolving market demand by answering the research question: Which competence gaps do we need to bridge in order to meet the future need for sufficiently qualified personnel in the EU Software sector? In this research, a mixed method approach was executed in twelve European countries, to map the current and future needs for competences in the EU. The analyses shows changes in demand regarding technical skills, e.g. low-code and a stronger focus on soft skills like communication and critical thinking. Besides this, the research showed educational institutes would do well to develop their curricula in a practical way by integration of real live cases and work together with organizations.
MULTIFILE
Author supplied: Within the Netherlands the interest for sustainability is slowly growing. However, most organizations are still lagging behind in implementing sustainability as part of their strategy and in developing performance indicators to track their progress; not only in profit organizations but in higher education as well, even though sustainability has been on the agenda of the higher educational sector since the 1992 Earth Summit in Rio, progress is slow. Currently most initiatives in higher education in the Netherlands have been made in the greening of IT (e.g. more energy efficient hardware) and in implementing sustainability as a competence in curricula. However if we look at the operations (the day to day processes and activities) of Dutch institutions for higher education we just see minor advances. In order to determine what the best practices are in implementing sustainable processes, We have done research in the Netherlands and based on the results we have developed a framework for the smart campus of tomorrow. The research approach consisted of a literature study, interviews with experts on sustainability (both in higher education and in other sectors), and in an expert workshop. Based on our research we propose the concept of a Smart Green Campus that integrates new models of learning, smart sharing of resources and the use of buildings and transport (in relation to different forms of education and energy efficiency). Flipping‐the‐classroom, blended learning, e‐learning and web lectures are part of the new models of learning that should enable a more time and place independent form of education. With regard to smart sharing of resources we have found best practices on sharing IT‐storage capacity among universities, making educational resources freely available, sharing of information on classroom availability and possibilities of traveling together. A Smart Green Campus is (or at least is trying to be) energy neutral and therefore has an energy building management system that continuously monitors the energy performance of buildings on the campus. And the design of the interior of the buildings is better suited to the new forms of education and learning described above. The integrated concept of Smart Green Campus enables less travel to and from the campus. This is important as in the Netherlands about 60% of the CO2 footprint of a higher educational institute is related to mobility. Furthermore we advise that the campus is in itself an object for study by students and researchers and sustainability should be made an integral part of the attitude of all stakeholders related to the Smart Green Campus. The Smart Green Campus concept provides a blueprint that Dutch institutions in higher education can use in developing their own sustainability strategy. Best practices are shared and can be implemented across different institutions thereby realizing not only a more sustainable environment but also changing the attitude that students (the professionals of tomorrow) and staff have towards sustainability.
DOCUMENT
Current methods for energy diagnosis in heating, ventilation and air conditioning (HVAC) systems are not consistent with process and instrumentation diagrams (P&IDs) as used by engineers to design and operate these systems, leading to very limited application of energy performance diagnosis in practice. In a previous paper, a generic reference architecture – hereafter referred to as the 4S3F (four symptoms and three faults) framework – was developed. Because it is closely related to the way HVAC experts diagnose problems in HVAC installations, 4S3F largely overcomes the problem of limited application. The present article addresses the fault diagnosis process using automated fault identification (AFI) based on symptoms detected with a diagnostic Bayesian network (DBN). It demonstrates that possible faults can be extracted from P&IDs at different levels and that P&IDs form the basis for setting up effective DBNs. The process was applied to real sensor data for a whole year. In a case study for a thermal energy plant, control faults were successfully isolated using balance, energy performance and operational state symptoms. Correction of the isolated faults led to annual primary energy savings of 25%. An analysis showed that the values of set probabilities in the DBN model are not outcome-sensitive. Link to the formal publication via its DOI https://doi.org/10.1016/j.enbuild.2020.110289
DOCUMENT
This paper assesses wind resource characteristics and energy yield for micro wind turbines integrated on noise barriers. An experimental set-up with sonic anemometers placed on top of the barrier in reference positions is realized. The effect on wind speed magnitude, inflow angle and turbulence intensity is analysed. The annual energy yield of a micro wind turbine is estimated and compared using data from a micro-wind turbine wind tunnel experiment and field data. Electrical energy costs are discussed as well as structural integration cost reduction and the potential energy yield could decrease costs. It was found that instantaneous wind direction towards the barrier and the height of observation play an influential role for the results. Wind speed increases in perpendicular flows while decreases in parallel flow, by +35% down to −20% from the reference. The azimuth of the noise barrier expressed in wind field rotation angles was found to be influential resulted in 50%–130% changes with respect to annual energy yield. A micro wind turbine (0.375 kW) would produce between 100 and 600 kWh annually. Finally, cost analysis with cost reductions due to integration and the energy yield changes due to the barrier, show a LCOE reduction at 60%–90% of the reference value. https://doi.org/10.1016/j.jweia.2020.104206
DOCUMENT
This paper analyzes connectivity and efficiency of a SME network across two industries. These characteristics are likely to be different for networks of various industries. The concept of 'small worlds' is used to judge overall network efficiency. The actual network can be classified as one in which a small world is present. Visualization of the results shows a single core group in the network. It was found that non-profit as well as science actors were overrepresented in the core of the field.
DOCUMENT