Machine learning models have proven to be reliable methods in classification tasks. However, little research has been conducted on the classification of dwelling characteristics based on smart meter and weather data before. Gaining insights into dwelling characteristics, which comprise of the type of heating system used, the number of inhabitants, and the number of solar panels installed, can be helpful in creating or improving the policies to create new dwellings at nearly zero-energy standard. This paper compares different supervised machine learning algorithms, namely Logistic Regression, Support Vector Machine, K-Nearest Neighbor, and Long-short term memory, and methods used to correctly implement these algorithms. These methods include data pre-processing, model validation, and evaluation. Smart meter data, which was used to train several machine learning algorithms, was provided by Groene Mient. The models that were generated by the algorithms were compared on their performance. The results showed that the Long-short term memory performed the best with 96% accuracy. Cross Validation was used to validate the models, where 80% of the data was used for training purposes and 20% was used for testing purposes. Evaluation metrics were used to produce classification reports, which indicates that the Long-short term memory outperforms the compared models on the evaluation metrics for this specific problem.
Key takeaways from the project underscore the importance of fostering long-term collaborations between technical experts, communities, and institutional partners. By integrating technical innovation with human-centred design, the SUSTENANCE project has not only advanced renewable energy adoption but also established a framework for empowering communities to actively participate in sustainable energy transitions. Moving forward, the lessons learned, and solutions developed provide a solid foundation for addressing future challenges in energy system decarbonization and resilience.
MULTIFILE
Loneliness among young adults is a growing concern worldwide, posing serious health risks. While the human ecological framework explains how various factors such as socio-demographic, social, and built environment characteristics can affect this feeling, still, relatively little is known about the effect of built environment characteristics on the feelings of loneliness that young people experience in their daily life activities. This research investigates the relationship between built environment characteristics and emotional state loneliness in young adults (aged 18–25) during their daily activities. Leveraging the Experience Sampling Method, we collected data from 43 participants for 393 personal experiences during daily activities across different environmental settings. The findings of a mixed-effects regression model reveal that built environment features significantly impact emotional state loneliness. Notably, activity location accessibility, social company during activities, and walking activities all contribute to reducing loneliness. These findings can inform urban planners and municipalities to implement interventions that support youngsters’ activities and positive experiences to enhance well-being and alleviate feelings of loneliness in young adults. Specific recommendations regarding the built environment are (1) to create spaces that are accessible, (2) create spaces that are especially accessible by foot, and (3) provide housing with shared facilities for young adults rather than apartments/studios.
LINK