Reversed-phase HPLC with mass spectrometric and diode array detection as well as some literature data were used to reveal the individual types of solutes in anthocyanin complexes of tulip flower petals that are responsible for tulip flower petals coloration of the samples available in the local flower market. It has been found that the main components of the complexes are 3-rutinosides and their 2”’ and 3”’ acylated with acetic acid derivatives of the three anthocyanidins - delphinidin, cyanidin and pelargonidin in the color dependent ratios, though trace quantities of 3-glucosides were found in some cases. For the anthocyanin structure confirmation a correlation analysis of solute retentions of cyanidin or pelargonidin derivatives vs that of delphinidin was proposed based upon equivalence of structures alteration in the solute pairs for each series. The specificity of solutes retention modes was revealed by relative retention analysis, the trend parameters reflected particularities of chromatographic behavior as well as that of electron spectra of the solutes. The difference of acylated anthocyanins retentions was proposed to disclose the conformation states of solutes in the sorbent interface.
AIM: To systematically review the available literature on the diagnostic accuracy of questionnaires and measurement instruments for headaches associated with musculoskeletal symptoms.DESIGN: Articles were eligible for inclusion when the diagnostic accuracy (sensitivity/specificity) was established for measurement instruments for headaches associated with musculoskeletal symptoms in an adult population. The databases searched were PubMed (1966-2018), Cochrane (1898-2018) and Cinahl (1988-2018). Methodological quality was assessed with the Quality Assessment of Diagnostic Accuracy Studies tool (QUADAS-2) and COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist for criterion validity. When possible, a meta-analysis was performed. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) recommendations were applied to establish the level of evidence per measurement instrument.RESULTS: From 3450 articles identified, 31 articles were included in this review. Eleven measurement instruments for migraine were identified, of which the ID-Migraine is recommended with a moderate level of evidence and a pooled sensitivity of 0.87 (95% CI: 0.85-0.89) and specificity of 0.75 (95% CI: 0.72-0.78). Six measurement instruments examined both migraine and tension-type headache and only the Headache Screening Questionnaire - Dutch version has a moderate level of evidence with a sensitivity of 0.69 (95% CI 0.55-0.80) and specificity of 0.90 (95% CI 0.77-0.96) for migraine, and a sensitivity of 0.36 (95% CI 0.21-0.54) and specificity of 0.86 (95% CI 0.74-0.92) for tension-type headache. For cervicogenic headache, only the cervical flexion rotation test was identified and had a very low level of evidence with a pooled sensitivity of 0.83 (95% CI 0.72-0.94) and specificity of 0.82 (95% CI 0.73-0.91).DISCUSSION: The current review is the first to establish an overview of the diagnostic accuracy of measurement instruments for headaches associated with musculoskeletal factors. However, as most measurement instruments were validated in one study, pooling was not always possible. Risk of bias was a serious problem for most studies, decreasing the level of evidence. More research is needed to enhance the level of evidence for existing measurement instruments for multiple headaches.
In this paper the concept of "ecological personality scales" is introduced. These are contextualized inventories with a high ecological validity. They are developed in a bottom-up or qualitative way and combine a relatively high trait specificity with a relatively high situational specificity. An ecological conscientiousness or time management scale for Ph.D. candidates was developed. It significantly predicted Ph.D. performance criteria and showed incremental validity beyond Big Five (Study 1) and narrow trait and frame-of-reference scales (Study 2). These findings suggest that an ecological approach may contribute to further improving the criterion validity of personality measures
Vanuit het bedrijfsleven is vraag naar het ontwikkelen van coatings met specifieke hoogwaardige eigenschappen. Een technisch haalbare en kosten efficiënte methode om dit te doen is door het inmengen van nanodeeltjes in coatings of in polymeren. Op dit moment is de beschikbaarheid (op grotere schaal) van hoogwaardige nanodeeltjes (grootte en deeltjesgrootte distributie) echter nog een knelpunt. Microreactortechnologie kan hiervoor een goede uitkomst bieden. In een microreactor kunnen reactiecondities zeer goed gecontroleerd worden en daardoor zal de reproduceerbaarheid goed zijn. Ook is het eenvoudig om een reactie in een microreactor op te schalen naar een groter volume. In het RAAK-MKB project Flow4Nano worden 2 sleutel technologieën van het lectoraat Material Sciences van Zuyd Hogeschool bij elkaar gebracht: nanotechnologie en microreactor technologie. In dit project zal de focus liggen op de toepassing van nanodeeltjes in optische coating voor zonnecellen en voor glastuinbouw. De toepassing in zonnecellen is een focus van het lectoraat Zonne Energie in de Gebouwde Omgeving van Zuyd. De toepassing in de glastuinbouw is een focus van de Hogeschool Arnhem Nijmegen in het lectoraat duurzame energie. De onderzoekvraag voor dit project is: “Can we produce nanoparticles with high specificity for use in advanced coatings and polymers with tailored functionalities for application in greenhouses and solar cells using (micro)flow?” De consortiumleden Zuyd Hogeschool / lectoraat material sciences (microreactor technologie / nanotechnologie), TNO/brightlands Material Centre (nanomaterialen voor energietoepassingen), Kriya Materials (producent nanodeeltjes) en Chemtrix (microflow apparatuur) zullen TiO2 en ZnO nanodeeltjes maken en karakteriseren. De consortiumpartners Zuyd / lectoraat Zonne-energie in de duurzaam gebouwde omgevingen HAN (lectoraat duurzame energie) zullen de geproduceerde nanodeeltjes testen in optisch actieve coatings voor toepassingen in zonne-energie en glastuinbouw respectievelijk. De consortiumpartner NanoHouse zal het stuk disseminatie op zich nemen.
Fluorescence microscopy is an indispensable technique to resolve structure and specificity in many scientific areas such as diagnostics, health care, materials- and life sciences. With the development of multi-functional instruments now costing hundreds of thousands of Euros, the availability and access to high-tech instrumentation is increasingly limited to larger imaging facilities. Here, we will develop a cost-effective alternative by combining a commercially available solution for high-resolution confocal imaging (the RCM from confocal.nl) with an open-hardware microscopy framework, the miCube, developed in the Laboratory of Biophysics of Wageningen University & Research. In addition, by implementing a recent invention of the applicant for the spectral separation of different emitters, we will improve the multiplexing capabilities of fluorescence microscopy in general and the RCM in particular. Together, our new platform will help to translate expertise and know-how created in an academic environment into a commercially sustainable future supporting the Dutch technology landscape.
Wildlife crime is an important driver of biodiversity loss and disrupts the social and economic activities of local communities. During the last decade, poaching of charismatic megafauna, such as elephant and rhino, has increased strongly, driving these species to the brink of extinction. Early detection of poachers will strengthen the necessary law enforcement of park rangers in their battle against poaching. Internationally, innovative, high tech solutions are sought after to prevent poaching, such as wireless sensor networks where animals function as sensors. Movement of individuals of widely abundant, non-threatened wildlife species, for example, can be remotely monitored ‘real time’ using GPS-sensors. Deviations in movement of these species can be used to indicate the presence of poachers and prevent poaching. However, the discriminative power of the present movement sensor networks is limited. Recent advancements in biosensors led to the development of instruments that can remotely measure animal behaviour and physiology. These biosensors contribute to the sensitivity and specificity of such early warning system. Moreover, miniaturization and low cost production of sensors have increased the possibilities to measure multiple animals in a herd at the same time. Incorporating data about within-herd spatial position, group size and group composition will improve the successful detection of poachers. Our objective is to develop a wireless network of multiple sensors for sensing alarm responses of ungulate herds to prevent poaching of rhinos and elephants.