From the article: Abstract Adjustment and testing of a combination of stochastic and nonstochastic observations is applied to the deformation analysis of a time series of 3D coordinates. Nonstochastic observations are constant values that are treated as if they were observations. They are used to formulate constraints on the unknown parameters of the adjustment problem. Thus they describe deformation patterns. If deformation is absent, the epochs of the time series are supposed to be related via affine, similarity or congruence transformations. S-basis invariant testing of deformation patterns is treated. The model is experimentally validated by showing the procedure for a point set of 3D coordinates, determined from total station measurements during five epochs. The modelling of two patterns, the movement of just one point in several epochs, and of several points, is shown. Full, rank deficient covariance matrices of the 3D coordinates, resulting from free network adjustments of the total station measurements of each epoch, are used in the analysis.
MULTIFILE
With summaries in Dutch, Esperanto and English. DOI: 10.4233/uuid:d7132920-346e-47c6-b754-00dc5672b437 "The subject of this study is deformation analysis of the earth's surface (or part of it) and spatial objects on, above or below it. Such analyses are needed in many domains of society. Geodetic deformation analysis uses various types of geodetic measurements to substantiate statements about changes in geometric positions.Professional practice, e.g. in the Netherlands, regularly applies methods for geodetic deformation analysis that have shortcomings, e.g. because the methods apply substandard analysis models or defective testing methods. These shortcomings hamper communication about the results of deformation analyses with the various parties involved. To improve communication solid analysis models and a common language have to be used, which requires standardisation.Operational demands for geodetic deformation analysis are the reason to formulate in this study seven characteristic elements that a solid analysis model needs to possess. Such a model can handle time series of several epochs. It analyses only size and form, not position and orientation of the reference system; and datum points may be under influence of deformation. The geodetic and physical models are combined in one adjustment model. Full use is made of available stochastic information. Statistical testing and computation of minimal detectable deformations is incorporated. Solution methods can handle rank deficient matrices (both model matrix and cofactor matrix). And, finally, a search for the best hypothesis/model is implemented. Because a geodetic deformation analysis model with all seven elements does not exist, this study develops such a model.For effective standardisation geodetic deformation analysis models need: practical key performance indicators; a clear procedure for using the model; and the possibility to graphically visualise the estimated deformations."
DOCUMENT
Author supplied: "This paper gives a linearised adjustment model for the affine, similarity and congruence transformations in 3D that is easily extendable with other parameters to describe deformations. The model considers all coordinates stochastic. Full positive semi-definite covariance matrices and correlation between epochs can be handled. The determination of transformation parameters between two or more coordinate sets, determined by geodetic monitoring measurements, can be handled as a least squares adjustment problem. It can be solved without linearisation of the functional model, if it concerns an affine, similarity or congruence transformation in one-, two- or three-dimensional space. If the functional model describes more than such a transformation, it is hardly ever possible to find a direct solution for the transformation parameters. Linearisation of the functional model and applying least squares formulas is then an appropriate mode of working. The adjustment model is given as a model of observation equations with constraints on the parameters. The starting point is the affine transformation, whose parameters are constrained to get the parameters of the similarity or congruence transformation. In this way the use of Euler angles is avoided. Because the model is linearised, iteration is necessary to get the final solution. In each iteration step approximate coordinates are necessary that fulfil the constraints. For the affine transformation it is easy to get approximate coordinates. For the similarity and congruence transformation the approximate coordinates have to comply to constraints. To achieve this, use is made of the singular value decomposition of the rotation matrix. To show the effectiveness of the proposed adjustment model total station measurements in two epochs of monitored buildings are analysed. Coordinate sets with full, rank deficient covariance matrices are determined from the measurements and adjusted with the proposed model. Testing the adjustment for deformations results in detection of the simulated deformations."
MULTIFILE
See Springer link - available under Open Access
LINK
KLM has revealed the plan to downsize the full-freight cargo fleet in Schiphol Airport, for that reason the company requires to explore the consequences of moving the cargo transported by the full freighters into the bellies of the passenger flights. In this study, the authors analyze the implications of this decision by considering the variability of the load factors and the impact that replacing old aircraft might have. The study addresses how the transition towards the belly operation should impact the current operation of KLM at Schiphol. Our study shows that the replacement of old aircraft with new 787s and 777s will have significant effect on the cargo capacity of the company. The results rise the discussion on future problems to be faced and how to make the transition from full freighter to belly operation.
DOCUMENT
KLM has revealed the plan to downsize the full-freight cargo fleet in Schiphol Airport, for that reason the company requires to explore the consequences of moving the cargo transported by the full freighters into the bellies of the passenger flights. In this study, the authors analyze the implications of this decision by considering the variability of the load factors and the impact that replacing old aircraft might have. The study addresses how the transition towards the belly operation should impact the current operation of KLM at Schiphol. Our study show that the replacement of old aircraft with new 787s and 777s will have significant effect on the cargo capacity of the company. The results rise the discussion on future problems to be faced and how to make the transition from full freighter to belly operation.
DOCUMENT
The aviation industry is a changing industry in which several factors influence the performance of the airport and the network of airports that are interconnected. Business models, technical operations in airspace and in the airfield, societal conditions among others are some of the ones that must be taken into account in order to get a full understanding of the cause-effect relationships that hinder the proper management of the system. In recent times with the evolution of the computer technology and the level of maturity of the algorithms used to simulate and analyse dynamic systems, simulation has gained more importance than before. Simulation approaches emerge as the ones that are able to take into account the stochastic nature of dynamic systems besides all the different factors that impact the systems under study. This is something that traditional analytical approaches could not evaluate and therefore under the constant change of the systems they lack of the proper flexibility to provide timely solutions. However with the popularity that simulation has gained, the different steps and good practices that must be taken into account are commonly forgotten when the simulation model is developed and then the system is analysed; in the particular case of the aviation industry this situation has gained particular importance.The current paper addresses some of the common flaws and pitfalls incurred when simulation is used for analysis of aeronautical systems. Pitfalls’ classification and suggestions for avoiding them are presented. Some flaws are exemplified through cases in which the conclusion from the analysis might differ depending on the angle of the analysis performed with the implications of different economic consequences for the decision makers. The main objective of this paper is that it serves as an eye-opener for a relatively novel researcher or practitioners in the art of simulation. It will serve for avoiding these common flaws when using simulation for addressing aviation problems.
DOCUMENT
KLM is downsizing the full-freight cargo fleet in Schiphol Airport, for that reason it is important for the company and the airport to explore the consequences of moving the cargo transported by the full freighters into the bellies of the passenger flights. The consequences of this action in terms of capacity and requirements are still unknown. The current study illustrates how to analyse the uncertainty present in the system for identifying the limitations and potential consequences of the reduction of full freighter fleet. The options we identify for coping with the current demand is by adjusting their load factors or increase the number of flights. The current model includes the airside operation of the airport, the truck movements and the traffic that arrives at Schiphol which allows addressing the impact of uncertainties of the operation as well as the limitations and potential problems of the phasing-out action.
DOCUMENT
This paper presents an innovative approach that combines optimization and simulation techniques for solving scheduling problems under uncertainty. We introduce an Opt–Sim closed-loop feedback framework (Opt–Sim) based on a sliding-window method, where a simulation model is used for evaluating the optimized solution with inherent uncertainties for scheduling activities. The specific problem tackled in this paper, refers to the airport capacity management under uncertainty, and the Opt–Sim framework is applied to a real case study (Paris Charles de Gaulle Airport, France). Different implementations of the Opt–Sim framework were tested based on: parameters for driving the Opt–Sim algorithmic framework and parameters for riving the optimization search algorithm. Results show that, by applying the Opt–Sim framework, potential aircraft conflicts could be reduced up to 57% over the non-optimized scenario. The proposed optimization framework is general enough so that different optimization resolution methods and simulation paradigms can be implemented for solving scheduling problems in several other fields.
DOCUMENT
In the literature about web survey methodology, significant eorts have been made to understand the role of time-invariant factors (e.g. gender, education and marital status) in (non-)response mechanisms. Time-invariant factors alone, however, cannot account for most variations in (non-)responses, especially fluctuations of response rates over time. This observation inspires us to investigate the counterpart of time-invariant factors, namely time-varying factors and the potential role they play in web survey (non-)response. Specifically, we study the effects of time, weather and societal trends (derived from Google Trends data) on the daily (non-)response patterns of the 2016 and 2017 Dutch Health Surveys. Using discrete-time survival analysis, we find, among others, that weekends, holidays, pleasant weather, disease outbreaks and terrorism salience are associated with fewer responses. Furthermore, we show that using these variables alone achieves satisfactory prediction accuracy of both daily and cumulative response rates when the trained model is applied to future unseen data. This approach has the further benefit of requiring only non-personal contextual information and thus involving no privacy issues. We discuss the implications of the study for survey research and data collection.
DOCUMENT