Swallowing muscle strength exercises are effective in restoring swallowing function. In order to perform the exercises with progressive load, the swallow exercise aid (SEA) was developed. Precise knowledge on which muscles are activated with swallowing exercises, especially with the SEA, is lacking. This knowledge would aid in optimizing the training program to target the relevant swallowing muscles, if necessary. Three healthy volunteers performed the three SEA exercises (chin tuck against resistance, jaw opening against resistance and effortful swallow) and three conventional exercises [conventional effortful swallow (cES), Shaker and Masako] in supine position inside an MRI scanner. Fast muscle functional MRI scans (generating quantitative T2-maps) were made immediately before and after the exercises. Median T2 values at rest and after exercise were compared to identify activated muscles. After the three SEA exercises, the suprahyoid, infrahyoid, sternocleidomastoid, and lateral pterygoid muscles showed significant T2 value increase. After the Shaker, the lateral pterygoid muscles did not show such an increase, but the three other muscle groups did. The cES and Masako caused no significant increase in any of these muscle groups. During conventional (Shaker) exercises, the suprahyoid, infrahyoid, and sternocleidomastoid muscles are activated. During the SEA exercises, the suprahyoid, infrahyoid, sternocleidomastoid, and lateral pterygoid muscles are activated. The findings of this explorative study further support the potential of the SEA to improve swallowing rehabilitation.
DOCUMENT
Background The plantar intrinsic foot muscles (PIFMs) have a role in dynamic functions, such as balance and propulsion, which are vital to walking. These muscles atrophy in older adults and therefore this population, which is at high risk to falling, may benefit from strengthening these muscles in order to improve or retain their gait performance. Therefore, the aim was to provide insight in the evidence for the effect of interventions anticipated to improve PIFM strength on dynamic balance control and foot function during gait in adults. Methods A systematic literature search was performed in five electronic databases. The eligibility of peer-reviewed papers, published between January 1, 2010 and July 8, 2020, reporting controlled trials and pre-post interventional studies was assessed by two reviewers independently. Results from moderate- and high-quality studies were extracted for data synthesis by summarizing the standardized mean differences (SMD). The GRADE approach was used to assess the certainty of evidence. Results Screening of 9199 records resulted in the inclusion of 11 articles of which five were included for data synthesis. Included studies were mainly performed in younger populations. Low-certainty evidence revealed the beneficial effect of PIFM strengthening exercises on vertical ground reaction force (SMD: − 0.31-0.37). Very low-certainty evidence showed that PIFM strength training improved the performance on dynamic balance testing (SMD: 0.41–1.43). There was no evidence for the effect of PIFM strengthening exercises on medial longitudinal foot arch kinematics. Conclusions This review revealed at best low-certainty evidence that PIFM strengthening exercises improve foot function during gait and very low-certainty evidence for its favorable effect on dynamic balance control. There is a need for high-quality studies that aim to investigate the effect of functional PIFM strengthening exercises in large samples of older adults. The outcome measures should be related to both fall risk and the role of the PIFMs such as propulsive forces and balance during locomotion in addition to PIFM strength measures.
MULTIFILE
Background: App-based mobile health exercise interventions can motivate individuals to engage in more physical activity (PA). According to the Fogg Behavior Model, it is important that the individual receive prompts at the right time to be successfully persuaded into PA. These are referred to as just-in-time (JIT) interventions. The Playful Active Urban Living (PAUL) app is among the first to include 2 types of JIT prompts: JIT adaptive reminder messages to initiate a run or walk and JIT strength exercise prompts during a walk or run (containing location-based instruction videos). This paper reports on the feasibility of the PAUL app and its JIT prompts.Objective: The main objective of this study was to examine user experience, app engagement, and users' perceptions and opinions regarding the PAUL app and its JIT prompts and to explore changes in the PA behavior, intrinsic motivation, and the perceived capability of the PA behavior of the participants.Methods: In total, 2 versions of the closed-beta version of the PAUL app were evaluated: a basic version (Basic PAUL) and a JIT adaptive version (Smart PAUL). Both apps send JIT exercise prompts, but the versions differ in that the Smart PAUL app sends JIT adaptive reminder messages to initiate running or walking behavior, whereas the Basic PAUL app sends reminder messages at randomized times. A total of 23 participants were randomized into 1 of the 2 intervention arms. PA behavior (accelerometer-measured), intrinsic motivation, and the perceived capability of PA behavior were measured before and after the intervention. After the intervention, participants were also asked to complete a questionnaire on user experience, and they were invited for an exit interview to assess user perceptions and opinions of the app in depth.Results: No differences in PA behavior were observed (Z=-1.433; P=.08), but intrinsic motivation for running and walking and for performing strength exercises significantly increased (Z=-3.342; P<.001 and Z=-1.821; P=.04, respectively). Furthermore, participants increased their perceived capability to perform strength exercises (Z=2.231; P=.01) but not to walk or run (Z=-1.221; P=.12). The interviews indicated that the participants were enthusiastic about the strength exercise prompts. These were perceived as personal, fun, and relevant to their health. The reminders were perceived as important initiators for PA, but participants from both app groups explained that the reminder messages were often not sent at times they could exercise. Although the participants were enthusiastic about the functionalities of the app, technical issues resulted in a low user experience.Conclusions: The preliminary findings suggest that the PAUL apps are promising and innovative interventions for promoting PA. Users perceived the strength exercise prompts as a valuable addition to exercise apps. However, to be a feasible intervention, the app must be more stable.
DOCUMENT