Background: Osteoarthritis is one of the most common chronic joint diseases, mostly affecting the knee or hip through pain, joint stiffness and decreased physical functioning in daily life. Regular physical activity (PA) can help preserve and improve physical functioning and reduce pain in patients with osteoarthritis. Interventions aiming to improve movement behaviour can be optimized by tailoring them to a patients' starting point; their current movement behaviour. Movement behaviour needs to be assessed in its full complexity, and therefore a multidimensional description is needed. Objectives: The aim of this study was to identify subgroups based on movement behaviour patterns in patients with hip and/or knee osteoarthritis who are eligible for a PA intervention. Second, differences between subgroups regarding Body Mass Index, sex, age, physical functioning, comorbidities, fatigue and pain were determined between subgroups. Methods: Baseline data of the clinical trial 'e-Exercise Osteoarthritis', collected in Dutch primary care physical therapy practices were analysed. Movement behaviour was assessed with ActiGraph GT3X and GT3X+ accelerometers. Groups with similar patterns were identified using a hierarchical cluster analysis, including six clustering variables indicating total time in and distribution of PA and sedentary behaviours. Differences in clinical characteristics between groups were assessed via Kruskall Wallis and Chi2 tests. Results: Accelerometer data, including all daily activities during 3 to 5 subsequent days, of 182 patients (average age 63 years) with hip and/or knee osteoarthritis were analysed. Four patterns were identified: inactive & sedentary, prolonged sedentary, light active and active. Physical functioning was less impaired in the group with the active pattern compared to the inactive & sedentary pattern. The group with the prolonged sedentary pattern experienced lower levels of pain and fatigue and higher levels of physical functioning compared to the light active and compared to the inactive & sedentary. Conclusions: Four subgroups with substantially different movement behaviour patterns and clinical characteristics can be identified in patients with osteoarthritis of the hip and/or knee. Knowledge about these subgroups can be used to personalize future movement behaviour interventions for this population.
LINK
Background: The concept of Functional Independence (FI), defined as ‘functioning physically safe and independent from other persons, within one’s context”, plays an important role in maintaining the functional ability to enable well-being in older age. FI is a dynamic and complex concept covering four clinical outcomes: physical capacity, empowerment, coping flexibility, and health literacy. As the level of FI differs widely between older adults, healthcare professionals must gain insight into how to best support older people in maintaining their level of FI in a personalized manner. Insight into subgroups of FI could be a first step in providing personalized support This study aims to identify clinically relevant, distinct subgroups of FI in Dutch community-dwelling older people and subsequently describe them according to individual characteristics. Results: One hundred fifty-three community-dwelling older persons were included for participation. Cluster analysis identified four distinctive clusters: (1) Performers – Well-informed; this subgroup is physically strong, well-informed and educated, independent, non-falling, with limited reflective coping style. (2) Performers – Achievers: physically strong people with a limited coping style and health literacy level. (3) The reliant- Good Coper representing physically somewhat limited people with sufficient coping styles who receive professional help. (4) The reliant – Receivers: physically limited people with insufficient coping styles who receive professional help. These subgroups showed significant differences in demographic characteristics and clinical FI outcomes. Conclusions: Community-dwelling older persons can be allocated to four distinct and clinically relevant subgroups based on their level of FI. This subgrouping provides insight into the complex holistic concept of FI by pointing out for each subgroup which FI domain is affected. This way, it helps to better target interventions to prevent the decline of FI in the community-dwelling older population.
Aims and objectives. The Forensic Early Warning Signs of Aggression Inventory (FESAI) was developed to assist nurses and patients in identifying early warning signs and constructing individual early detection plans (EDP) for the prevention of aggressive incidents. The aims of this research were as follows: First, to study the prevalence of early warning signs of aggression, measured with the FESAI, in a sample of forensic patients, and second, to explore whether there are any types of warning signs typical of diagnostic subgroups or offender subgroups. Background. Reconstructing patients’ changes in behaviour prior to aggressive incidents may contribute to identify early warning signs specific to the individual patient. The EDP comprises an early intervention strategy suggested by the patient and approved by the nurses. Implementation of EDP may enhance efficient risk assessment and management. Design. An explorative design was used to review existing records and to monitor frequencies of early warning signs. Methods. Early detection plans of 171 patients from two forensic hospital wards were examined. Frequency distributions were estimated by recording the early warning signs on the FESAI. Rank order correlation analyses were conducted to compare diagnostic subgroups and offender subgroups concerning types and frequencies of warning signs. Results. The FESAI categories with the highest frequency rank were the following: (1) anger, (2) social withdrawal, (3) superficial contact and (4) non-aggressive antisocial behaviour. There were no significant differences between subgroups of patients concerning the ranks of the four categories of early warning signs. Conclusion. The results suggest that the FESAI covers very well the wide variety of occurred warning signs reported in the EDPs. No group profiles of warning signs were found to be specific to diagnosis or offence type. Relevance to clinical practice. Applying the FESAI to develop individual EDPs appears to be a promising approach to enhance risk assessment and management.
Low back pain is the leading cause of disability worldwide and a significant contributor to work incapacity. Although effective therapeutic options are scarce, exercises supervised by a physiotherapist have shown to be effective. However, the effects found in research studies tend to be small, likely due to the heterogeneous nature of patients' complaints and movement limitations. Personalized treatment is necessary as a 'one-size-fits-all' approach is not sufficient. High-tech solutions consisting of motions sensors supported by artificial intelligence will facilitate physiotherapists to achieve this goal. To date, physiotherapists use questionnaires and physical examinations, which provide subjective results and therefore limited support for treatment decisions. Objective measurement data obtained by motion sensors can help to determine abnormal movement patterns. This information may be crucial in evaluating the prognosis and designing the physiotherapy treatment plan. The proposed study is a small cohort study (n=30) that involves low back pain patients visiting a physiotherapist and performing simple movement tasks such as walking and repeated forward bending. The movements will be recorded using sensors that estimate orientation from accelerations, angular velocities and magnetometer data. Participants complete questionnaires about their pain and functioning before and after treatment. Artificial analysis techniques will be used to link the sensor and questionnaire data to identify clinically relevant subgroups based on movement patterns, and to determine if there are differences in prognosis between these subgroups that serve as a starting point of personalized treatments. This pilot study aims to investigate the potential benefits of using motion sensors to personalize the treatment of low back pain. It serves as a foundation for future research into the use of motion sensors in the treatment of low back pain and other musculoskeletal or neurological movement disorders.
Many companies struggle with their workplace strategy and corporate real-estate strategy, especially when they have a high percentage of knowledge workers. How to balance employee satisfaction and productivity with the cost of offices.This project focused on developing methods and tools to design customer journeys and predict the impact of investments and changes on user satisfaction with the work environment. The tools, including a game and simulation tool, allowed to focus on the needs of particular subgroups of employees while at the same time keeping an overview on the satisfaction and perceived productivity of all employees and guests. We applied Quality Function Deployment techniques to understand how needs of different types of users of (activity-based) office environments can catered for in smart customer-centric office design.