Making food packaging more sustainable is a complex process. Research has shown that specific knowledge is needed to support packaging developers to holistically improve the sustainability of packaging. Within this study we aim to provide insights in the various tradeoffs designers face with the aim to provide insights for future sustainable food packaging (re)design endeavors. The study consists of analyzing and coding 19 reports in which bachelor students worked on assignments ranging from (1) analyzing the supply chain of a food product-packaging combination to (2) redesigning a specific food packaging. We identified 6 tradeoffs: (1) Perceived Sustainability vs. Achieved Sustainability, (2) Food Waste vs. Sustainability, (3) Branding vs. Sustainability, (4) Product Visibility vs. Sustainability, (5) Costs vs. Sustainability, and (6) Use Convenience vs Sustainability. We compared the six tradeoffs with literature. Two tradeoffs can be seen as additional to topics mentioned within literature, namely product visibility and use convenience. In addition, while preventing food waste is mentioned as an important functionality of food packaging, this functionality seems to be underexposed within practice.
MULTIFILE
This case study describes a special edition of the European Project Semester at the course Sustainable Packaging Design and Innovation at the Faculty of Industrial Design Engineering at The Hague University of Applied Sciences (Fall Semester 2017). In this special edition, unique cooperation took place between 12 parties. The parties were three research institutes, six universities, and three companies. Some parties have developed an educational module focused upon sustainable and circular packaging design, including the use of a dedicated tool for life cycle assessment. This module was embedded in the regular EPS. At The Hague University of Applied Sciences, an international class of 16 students worked in four teams on a real-life design assignment. They were offered a wide range of lectures, workshops, pitches, and presentations. The chapter concludes with a review of the followed processes and organizational, managerial, and practical concerns. Although run as a unique edition, all parties discuss to continue this cooperation.
DOCUMENT
Sustainable consumption is interlinked with sustainable production. This chapter will introduce the closed-loop production, the circular economy, the steady state economy, and Cradle to Cradle (C2C) models of production. It will reflect on the key blockages to a meaningful sustainable production and how these could be overcome, particularly in the context of business education. The case study of the course for bachelor’s students within International Business Management Studies (IBMS) program at three Universities of Applied Science (vocational schools), and at Leiden University College in The Netherlands will be discussed. Student teams from these schools were given the assignment to make a business plan for a selected sponsor company in order to advise them how to make a transition from a linear to circular economy model. These case studies will illustrate the opportunities as well as potential pitfalls of the closed loop production models. The results of case studies’ analysis show that there was a mismatch between expectations of the sponsor companies and those of students on the one hand and a mismatch between theory and practice on the other hand. The former mismatch is explained by the fact that the sponsor companies have experienced a number of practical constraints when confronted with the need for the radical overhaul of established practices within the entire supply chain and students have rarely considered the financial viability of the "ideal scenarios" of linear-circular transitions. The latter mismatch applies to what students had learned about macro-economic theory and the application through micro-economic scenarios in small companies. https://www.springer.com/gp/book/9783319656076 LinkedIn: https://www.linkedin.com/in/helenkopnina/
MULTIFILE
Plastic products are currently been critically reviewed due to the growing awareness on the related problems, such as the “plastic soup”. EU has introduced a ban for a number of single-use consumer products and fossil-based polymers coming in force in 2021. The list of banned products are expected to be extended, for example for single-use, non-compostable plastics in horticulture and agriculture. Therefore, it is crucial to develop sustainable, biodegradable alternatives. A significant amount of research has been performed on biobased polymers. However, plastics are made from a polymer mixed with other materials, additives, which are essential for the plastics production and performance. Development of biodegradable solutions for these additives is lacking, but is urgently needed. Biocarbon (Biochar), is a high-carbon, fine-grained residue that is produced through pyrolysis processes. This natural product is currently used to produce energy, but the recent research indicate that it has a great potential in enhancing biopolymer properties. The biocarbon-biopolymer composite could provide a much needed fully biodegradable solution. This would be especially interesting in agricultural and horticultural applications, since biocarbon has been found to be effective at retaining water and water-soluble nutrients and to increase micro-organism activity in soil. Biocarbon-biocomposite may also be used for other markets, where biodegradability is essential, including packaging and disposable consumer articles. The BioADD consortium consists of 9 industrial partners, a branch organization and 3 research partners. The partner companies form a complementary team, including biomass providers, pyrolysis technology manufacturers and companies producing products to the relevant markets of horticulture, agriculture and packaging. For each of the companies the successful result from the project will lead to concrete business opportunities. The support of Avans, University of Groningen and Eindhoven University of Technology is essential in developing the know-how and the first product development making the innovation possible.
The production, use, disposal and recovery of packaging not only generates massive volumes of waste, it also consumes raw materials, water and energy (Fitzpatrick et al. 2012). Simultaneously, consumers have shown an increasing interest in products incorporating sustainable and social attributes (Kletzan et al., 2006). As a result, environmentally friendly packaging, also called ecofriendly or sustainable packaging, has become mainstream. In this context, packaging is more than just ensuring the product's protection and easing transportation, it is also a communicative tool (Palmer, 2000) and it becomes associated with multiple drivers of the purchasing process. Consequently, companies face pressure to innovate responding to consumer demands, and focusing on sustainable solutions that reduce harmful materials and favour green alternatives for both, the product and the packaging. Although the above has triggered research on consumer choice for sustainable products and alternatives on sustainable packaging, the relation between sustainable packaging and consumer behaviour remains underexplored. This research unpacks this relationship, i.e., empirically verifies which dimensions (recyclability, biodegradability, reusability) of sustainable packaging are perceived and valued by consumers. Put differently, this research investigates consumer behaviour towards the functions of sustainable packaging in terms of product protection, convenience, reliability of information and promotion, and scrutinises the perceived credibility of the associated ethical responsibility claims. It aims to identify those packaging materials and/or sustainability characteristics perceived as more sustainable by consumers as well as the factors influencing actual consumer choice towards sustainable packaged products. We aim to gain more insights in the perceptual frame that different types of consumers apply when exposed to sustainable packaging. To this end, we will make use of revealed preference methods to measure consumer valuations of sustainable packaged products. This game-theoretic approach should provide a more complete depiction of consumers' perceptions and preferences.
In Europe we consume 50 million tonnes of plastic a year. The use of plastic has increased fiftyfold in fifty years and the growth continues. Collecting and recycling plastic is thus essential to avoid the pollution of the land and sea. However, generally, post-consumer plastics have very low recycling rates, at present only 7% of plastic used in Europe comes from recycled polymers. Polyethylene terephthalate (PET) is one of the most recycled materials; in 2017 more than 57% of PET bottles were recycled in Europe, used in both packaging and fibre applications. Especially transparent PET bottles have high collecting and recycling rates over Europe. However, the plastics have very different value depending on their colour. If the plastic is even very lightly coloured, the plastic will lose a large percentage of its value. Decolouring plastic is complicated and currently no efficient and economically viable system exists. FT Innovations, a SME with the core-expertise in extraction, sees potential in developing a sustainable decolouration process with a new extraction technology, which offers significant potential in replacing hazardous, relatively expensive and environmentally damaging organic solvents that are currently used on decolouration. Avans has relevant expertise in both (biobased) plastic colourants and the extraction techniques as demonstrated in previous projects, and therefore FT innovations approached Avans with the request to assist in the feasibility study. The consortium is further strengthen by CCT Oss with their strong industrial know-how of colourants and their use in plastics and Plastic Company with their core activity on recycling of PET and other plastic materials.