Municipalities play an important role in tackling city logistics related matters, having many instruments at hand. However, it is not self-evident that all municipalities use these instruments to their full potential. A method to measure city logistics performance of municipalities can help in creating awareness and guidance, to ultimately lead to a more sustainable environment for inhabitants and businesses. Subsequently, this research is focused on a maturity model as a tool to assess the maturity level of a municipality for its performance related city logistics process management. Various criteria for measuring city logistics performance are studied and based on that the model is populated through three focus fields (Technical, Social and Corporate, and Policy), branching out into six areas of development: Information and communication technology, urban logistics planning, Stakeholder communication, Public Private Partnerships, Subsidisation and incentivisation, and Regulations. The CL3M model was tested for three municipalities, namely, municipality of Utrecht, Den Bosch and Groningen. Through these maturity assessments it became evident the model required specificity complementary to the existing assessment interview, and thus a SWOT analysis should be added as a conclusion during the maturity assessment.
DOCUMENT
Purpose Electric freight vehicles (EFVs) are one of the solutions to improve city logistics’ sustainability. EFVs, that are electric powered light and heavy vehicles with a number plate, have the potential to make zero emission city logistics possible within the urban area. However, although trials have been undertaken for the last years, large-scale usage of EFVs in city logistics does not occur yet. EFVs are technically possi- ble, but the implementation of EFVs in practice is relatively limited. Design This chapter examines by reviewing current and past EFV implementations, what are the challenges, barriers and success factors for EFVs in city logistics operations. EFVs have especially positive envir- onmental effects, but are overall usually more expensive (especially in procurement) than conventional vehicles. Besides, other technical and operational issues remain to be solved, and many uncertainties still exist on long-term usage. Findings Three main barriers for large-scale EFV uptake are identi- fied. The current logistics concepts are developed for conventional vehi- cles and should be redesigned to fit EFVs better. Local authorities’ support is essential in order to find a positive (or not too negative) business case. And EFV implementation requires companies that want to be sustainable. This contribution presents examples of how some companies or authorities deal with these barriers. Value This chapter concludes by identifying elements that are necessary for acceleration of EFV uptake in city logistics operations.
LINK
Little progress has been made in recent years toward achieving a fully circular economy by 2050. Implementing circular urban supply chains is a major economic transformation that can only work if significant coordination problems between the actors involved are solved. On the one hand, this requires the implementation of efficient urban collection technologies, where process industries collaborate hand-in-hand with manufacturers, urban waste treatment, and city logistics specialists and are supported by digital solutions for visibility and planning. But on the other hand, it also requires implementing regional and urban ecosystems connected by innovative CO2-neutral circular city logistics systems smoothly and sustainably managing the regional flow of resources and data, often at large and with interfaces between industrial processes and private and private and public actors. What are relevant research questions from a city logistics perspective?
MULTIFILE
To realize a more sustainable city logistics system the focus should go beyond reducing emissions only. Next to zero emission vehicles, reduction of urban logistics trips is required in light of several urban, environmental and economic challenges. This contribution focuses on the role of hubs and decoupling points, where logistics flows to and from a city are decoupled from the flows in a city, to optimize the city logistics. For six distinctive hubs or decoupling point concepts, we examine the potential under current market and legal conditions. By decomposing city logistics in subsegments and urban logistics trip structures, we estimate the realistic trip reduction potential of decouple points in the current city logistics conditions.
LINK
This paper examines how the transition management approach for sustainability transitions can be applied to the case of how Rotterdam established a zero-emission zone (ZEZ) for city logistics, aiming to stimulate the adoption of electric freight vehicles, enhance logistics efficiency and improve liveability. The study highlights the challenges and strategies involved in transitioning to a sustainable city logistics system. Through a case study methodology, the paper explores the development and implementation of Rotterdam's ZEZ, emphasising the importance of stakeholder collaboration, strategic planning, and continuous monitoring. The findings provide valuable insights into the practical application of transition management theory in city logistics, offering best practices for other cities aiming to achieve similar sustainability goals.
DOCUMENT
Urban construction logistics has a big impact on cities. The topic of this paper is governance strategies for realising more sustainable urban construction logistics. Although not much research has been done in the field of governance of construction logistics, several authors have stressed the fragmented nature of the construction industry and the importance of collaboration in urban construction logistics as issues. A literature review was done to identify the barriers in collaboration. Based on these barriers the research objective was to determine which drivers for collaborative governance are needed to improve urban construction logistics. The methods for data collection were semi-structured interviews and a focus group. The collaborative governance model is applied as a strategy to overcome the barriers in collaboration and governance identified. Key findings are both formal and informal barriers hinder the governance of construction logistics. Based on a collaborative governance model we identified four for improving collaborative governance.
DOCUMENT
A large share of urban freight in cities is related to construction works. Construction is required to create attractive, sustainable and economically viable cities. When activities at and around construction sites are not managed effectively, they can have a negative impact on the cities liveability. Construction companies implementing logistics concepts show a reduction of logistic costs, less congestion around the sites and improved productivity and safety. The client initially sets the ‘ground rules’ for construction in the tendering process. This paper explores how tendering for construction projects can support sustainable urban construction logistics. We explore the potential for tendering construction projects, by both public and private clients, for sustainable urban construction logistics and we present a conceptual framework for specifying ‘logistics quality’ as a quality criterion for EMAT (Economically Most Advantageous Tender). Our exploration results in questions for further research in tendering for sustainable urban construction logistics.
DOCUMENT
from the article: "Abstract The way in which construction logistics is organised has considerable impact on production flow, transportation efficiency, greenhouse gas emissions and congestion, particularly in urban areas such as city centres. In cities such as London and Amsterdam municipalities have issued new legislation and stricter conditions for vehicles to be able to access cities and city centres in particular. Considerate clients, public as well private, have started developing tender policies to encourage contractors to reduce the environmental impact of construction projects. This paper reports on an ongoing research project applying and assessing developments in the field of construction logistics in the Netherlands. The cases include contractors and third party logistics providers applying consolidation centres and dedicated software solutions to increase transportation efficiency. The case show various results of JIT logistics management applied to urban construction projects leading to higher transportation efficiencies, and reduced environmental impact and increased production efficiency on site. The data collections included to-site en on-site observations, measurement and interviews. The research has shown considerable reductions of vehicles to deliver goods and to transport workers to site. In addition the research has shown increased production flow and less waste such as inventory, waiting and unnecessary motion on site."
DOCUMENT
This paper presents challenges in city logistics for circular supply chains of e-e-waste. Efficient e-waste management is one of the strategies to save materials, critical minerals, and precious metals. E-waste collection and recycling have gained attention recently due to lower collection and recycling rates. However, implementing circular urban supply chains is a significant economic transformation that can only work if coordination decisions are solved between the actors involved. On the one hand, this requires the implementation of efficient urban collection technologies, where waste collection companies collaborate with manufacturers, urban waste treatment specialists, and city logistics service providers supported by digital solutions for visibility and planning. On the other hand, it also requires implementing urban and regional ecosystems connected by innovative CO2-neutral circular city logistics systems. These systems must smoothly and sustainably manage the urban and regional flow of resources and data, often at a large scale and with interfaces between industrial processes, private, and public actors. This paper presents future research questions from a city logistics perspective based on a European project aimed at developing a blueprint for systemic solutions for the circularity of plastics from applications of rigid PU foams used as insulation material in refrigerators.
MULTIFILE
The HARMONY project supports and enables several metropolitan areas to lead a sustainable transition to a low-carbon new mobility era. For city logistics, innovative services and developments can serve as promising solutions to reduce greenhouse gas emissions and energy consumption in metropolitan areas. The focus of this paper is on the importance of co-creation to achieve the desired reduction in emissions, including both engagement activities and (small scale) demonstrations. The constant and simultaneous involvement of cities, service and technology providers, research entities but also the civil society, is crucial for identifying success factors and lessons learnt.
LINK