Among other things, learning to write entails learning how to use complex sentences effectively in discourse. Some research has therefore focused on relating measures of syntactic complexity to text quality. Apart from the fact that the existing research on this topic appears inconclusive, most of it has been conducted in English L1 contexts. This is potentially problematic, since relevant syntactic indices may not be the same across languages. The current study is the first to explore which syntactic features predict text quality in Dutch secondary school students’ argumentative writing. In order to do so, the quality of 125 argumentative essays written by students was rated and the syntactic features of the texts were analyzed. A multilevel regression analysis was then used to investigate which features contribute to text quality. The resulting model (explaining 14.5% of the variance in text quality) shows that the relative number of finite clauses and the ratio between the number of relative clauses and the number of finite clauses positively predict text quality. Discrepancies between our findings and those of previous studies indicate that the relations between syntactic features and text quality may vary based on factors such as language and genre. Additional (cross-linguistic) research is needed to gain a more complete understanding of the relationships between syntactic constructions and text quality and the potential moderating role of language and genre.
DOCUMENT
Abstract-Architecture Compliance Checking (ACC) is useful to bridge the gap between architecture and implementation. ACC is an approach to verify conformance of implemented program code to high-level models of architectural design. Static ACC focuses on the modular software architecture and on the existence of rule violating dependencies between modules. Accurate tool support is essential for effective and efficient ACC. This paper presents a study on the accuracy of ACC tools regarding dependency analysis and violation reporting. Seven tools were tested and compared by means of a custom-made test application. In addition, the code of open source system Freemind was used to compare the tools on the number and precision of reported violation and dependency messages. On the average, 74 percent of 34 dependency types in our custom-made test software were reported, while 69 percent of 109 violating dependencies within a module of Freemind were reported. The test results show large differences between the tools, but all tools could improve the accuracy of the reported dependencies and violations.
DOCUMENT
SUMMARY Architecture compliance checking (ACC) is an approach to verify conformance of implemented program code to high-level models of architec tural design. Static ACC focuses on the modular software architecture and on the existence of rule violating dependencies between modules. Accurate tool support is essential for effective and efficient ACC. This paper presents a study on the accuracy of ACC tools regarding dependency analysis and violation reporting. Ten tools were tested and compare d by means of a custom-made benchmark. The Java code of the benchmark testware contains 34 different types of dependencies, which are based on an inventory of dependency types in object oriented program code. In a second test, the code of open source system FreeMind was used to compare the 10 tools on the number of reported rule violating dependencies and the exactness of the dependency and violation messages. On the average, 77% of the dependencies in our custom-made test software were reported, while 72% of the dependencies within a module of FreeMind were reported. The results show that all tools in the test could improve the accuracy of the reported dependencies and violations, though large differences between the 10 tools were observed. We have identified10 hard-to-detect types of dependencies and four challenges in dependency detection. The relevance of our findings is substantiated by means of a frequency analysis of the hard-to-detect types of dependencies in five open source systems. DOI: 10.1002/spe.2421
DOCUMENT