Background: Self-management of exacerbations in COPD patients is important to reduce exacerbation impact. There is a need for more comprehensive and individualized interventions to improve exacerbation-related selfmanagement behavior. The use of mobile health (mHealth) could help to achieve a wide variety of behavioral goals. Understanding of patients and health care providers perspectives towards using mHealth in promoting selfmanagement will greatly enhance the development of solutions with optimal usability and feasibility. Therefore, the aim of this study was to explore perceptions of COPD patients and their health care providers towards using mHealth for self-management of exacerbations. Methods: A qualitative study using focus group interviews with COPD patients (n = 13) and health care providers (HCPs) (n = 6) was performed to explore perceptions towards using mHealth to support exacerbation-related selfmanagement. Data were analyzed by a thematic analysis. Results: COPD patients and HCPs perceived mostly similar benefits and barriers of using mHealth for exacerbationrelated self-management. These perceived benefits and barriers seem to be important drivers in the willingness to use mHealth. Both patients and HCPs strengthen the need for a multi-component and tailored mHealth intervention that improves patients’ exacerbation-related self-management by determining their health status and providing adequate information, decision support and feedback on self-management behavior. Most importantly, patients and HCPs considered an mHealth intervention as support to improve self-management and emphasized that it should never replace patients’ own feelings nor undermine their own decisions. In addition, the intervention should be complementary to regular contact with HCPs, as personal contact with a HCP was considered to be very important. To optimize engagement with mHealth, patients should have a positive attitude toward using mHealth and an mHealth intervention should be attractive, rewarding and safe. Conclusions: This study provided insight into perceptions of COPD patients and their HCPs towards using mHealth for self-management of exacerbations. This study points out that future mHealth interventions should focus on developing self-management skills over time by providing adequate information, decision support and feedback on self-management behavior and that mHealth should complement regular care. To optimize engagement, mHealth interventions should be attractive, rewarding, safe and tailored to the patient needs.
Background: Adequate self-management skills are of great importance for patients with chronic obstructive pulmonary disease (COPD) to reduce the impact of COPD exacerbations. Using mobile health (mHealth) to support exacerbation-related self-management could be promising in engaging patients in their own health and changing health behaviors. However, there is limited knowledge on how to design mHealth interventions that are effective, meet the needs of end users, and are perceived as useful. By following an iterative user-centered design (UCD) process, an evidence-driven and usable mHealth intervention was developed to enhance exacerbation-related self-management in patients with COPD. Objective: This study aimed to describe in detail the full UCD and development process of an evidence-driven and usable mHealth intervention to enhance exacerbation-related self-management in patients with COPD. Methods: The UCD process consisted of four iterative phases: (1) background analysis and design conceptualization, (2) alpha usability testing, (3) iterative software development, and (4) field usability testing. Patients with COPD, health care providers, COPD experts, designers, software developers, and a behavioral scientist were involved throughout the design and development process. The intervention was developed using the behavior change wheel (BCW), a theoretically based approach for designing behavior change interventions, and logic modeling was used to map out the potential working mechanism of the intervention. Furthermore, the principles of design thinking were used for the creative design of the intervention. Qualitative and quantitative research methods were used throughout the design and development process. Results: The background analysis and design conceptualization phase resulted in final guiding principles for the intervention, a logic model to underpin the working mechanism of the intervention, and design requirements. Usability requirements were obtained from the usability testing phases. The iterative software development resulted in an evidence-driven and usable mHealth intervention—Copilot, a mobile app consisting of a symptom-monitoring module, and a personalized COPD action plan. Conclusions: By following a UCD process, an mHealth intervention was developed that meets the needs and preferences of patients with COPD, is likely to be used by patients with COPD, and has a high potential to be effective in reducing exacerbation impact. This extensive report of the intervention development process contributes to more transparency in the development of complex interventions in health care and can be used by researchers and designers as guidance for the development of future mHealth interventions.
Background: Phantom limb pain is a frequent and persistent problem following amputation. Achieving sustainable favorable effects on phantom limb pain requires therapeutic interventions such as mirror therapy that target maladaptive neuroplastic changes in the central nervous system. Unfortunately, patients’ adherence to unsupervised exercises is generally poor and there is a need for effective strategies such as telerehabilitation to support long-term self-management of patients with phantom limb pain. Objective: The main aim of this study was to describe the user-centered approach that guided the design and development of a telerehabilitation platform for patients with phantom limb pain. We addressed 3 research questions: (1) Which requirements are defined by patients and therapists for the content and functions of a telerehabilitation platform and how can these requirements be prioritized to develop a first prototype of the platform? (2) How can the user interface of the telerehabilitation platform be designed so as to match the predefined critical user requirements and how can this interface be translated into a medium-fidelity prototype of the platform? (3) How do patients with phantom limb pain and their treating therapists judge the usability of the medium-fidelity prototype of the telerehabilitation platform in routine care and how can the platform be redesigned based on their feedback to achieve a high-fidelity prototype?