The relationship between race and biology is complex. In contemporary medical science, race is a social construct that is measured via self-identification of study participants. But even though race has no biological essence, it is often used as variable in medical guidelines (e.g., treatment recommendations specific for Black people with hypertension). Such recommendations are based on clinical trials in which there was a significant correlation between self-identified race and actual, but often unmeasured, health-related factors such as (pharmaco) genetics, diet, sun exposure, etc. Many teachers are insufficiently aware of this complexity. In their classes, they (unintentionally) portray self-reported race as having a biological essence. This may cause students to see people of shared race as biologically or genetically homogeneous, and believe that race-based recommendations are true for all individuals (rather than reflecting the average of a heterogeneous group). This medicalizes race and reinforces already existing healthcare disparities. Moreover, students may fail to learn that the relation between race and health is easily biased by factors such as socioeconomic status, racism, ancestry, and environment and that this limits the generalizability of race-based recommendations. We observed that the clinical case vignettes that we use in our teaching contain many stereotypes and biases, and do not generally reflect the diversity of actual patients. This guide, written by clinical pharmacology and therapeutics teachers, aims to help our colleagues and teachers in other health professions to reflect on and improve our teaching on race-based medical guidelines and to make our clinical case vignettes more inclusive and diverse.
MULTIFILE
Abstract Purpose Sharing and developing digital educational resources and open educational resources has been proposed as a way to harmonize and improve clinical pharmacology and therapeutics (CPT) education in European medical schools. Previous research, however, has shown that there are barriers to the adoption and implementation of open educational resources. The aim of this study was to determine perceived opportunities and barriers to the use and creation of open educational resources among European CPT teachers and possible solutions for these barriers. Methods CPT teachers of British and EU medical schools completed an online survey. Opportunities and challenges were identified by thematic analyses and subsequently discussed in an international consensus meeting. Results Data from 99 CPT teachers from 95 medical schools were analysed. Thirty teachers (30.3%) shared or collaboratively produced digital educational resources. All teachers foresaw opportunities in the more active use of open educational resources, including improving the quality of their teaching. The challenges reported were language barriers, local differences, lack of time, technological issues, difficulties with quality management, and copyright restrictions. Practical solutions for these challenges were discussed and include a peer review system, clear indexing, and use of copyright licenses that permit adaptation of resources. Conclusion Key challenges to making greater use of CPT open educational resources are a limited applicability of such resources due to language and local differences and quality concerns. These challenges may be resolved by relatively simple measures, such as allowing adaptation and translation of resources and a peer review system.
MULTIFILE
Aim: Improvement and harmonization of European clinical pharmacology and therapeutics (CPT) education is urgently required. Because digital educational resources can be easily shared, adapted to local situations and re-used widely across a variety of educational systems, they may be ideally suited for this purpose. Methods: With a cross-sectional survey among principal CPT teachers in 279 out of 304 European medical schools, an overview and classification of digital resources was compiled. Results: Teachers from 95 (34%) medical schools in 26 of 28 EU countries responded, 66 (70%) of whom used digital educational resources in their CPT curriculum. A total of 89 of such resources were described in detail, including e-learning (24%), simulators to teach pharmacokinetics and/or pharmacodynamics (10%), virtual patients (8%), and serious games (5%). Together, these resources covered 235 knowledge-based learning objectives, 88 skills, and 13 attitudes. Only one third (27) of the resources were in-part or totally free and only two were licensed open educational resources (free to use, distribute and adapt). A narrative overview of the largest, free and most novel resources is given. Conclusion: Digital educational resources, ranging from e-learning to virtual patients and games, are widely used for CPT education in EU medical schools. Learning objectives are based largely on knowledge rather than skills or attitudes. This may be improved by including more real-life clinical case scenarios. Moreover, the majority of resources are neither free nor open. Therefore, with a view to harmonizing international CPT education, more needs to be learned about why CPT teachers are not currently sharing their educational materials.
MULTIFILE