Airport management is frequently faced with a problem of assigning flights to available stands and parking positions in the most economical way that would comply with airline policies and suffer minimum changes due to any operational disruptions. This work presents a novel approach to the most common airport problem – efficient stand assignment. The described algorithm combines benefits of data-mining and metaheuristic approaches and generates qualitative solutions, aware of delay trends and airport performance perturbations. The presented work provides promising solutions from the starting moments of computation, in addition, it delivers to the airport stakeholders delay-aware stand assignment, and facilitates the estimation of risk and consequences of any operational disruptions on the slot adherence.
MULTIFILE
This study examines the automaticity of processing the emotional aspects of words, and characterizes the oscillatory brain dynamics that accompany this automatic processing. Participants read emotionally negative, neutral and positive nouns while performing a color detection task in which only perceptual-level analysis was required. Event-related potentials and time frequency representations were computed from the concurrently measured EEG. Negative words elicited a larger P2 and a larger late positivity than positive and neutral words, indicating deeper semantic/evaluative processing of negative words. In addition, sustained alpha power suppressions were found for the emotional compared to neutral words, in the time range from 500 to 1000. ms post-stimulus. These results suggest that sustained attention was allocated to the emotional words, whereas the attention allocated to the neutral words was released after an initial analysis. This seems to hold even when the emotional content of the words is task-irrelevant.
LINK