Offering time windows to receivers of last-mile delivery is becoming a distinguishing factor. However, we see that in practice carriers have to create routes for their vehicles based on destination information, that is just being revealed when a parcel arrives in the depot. The parcel has to be assigned directly to a vehicle, making this a Dynamic Assignment Vehicle Routing Problem. Incorporating time windows is hard in this case. In this paper an approach is presented to solve this problem including Time Windows. A comparison is made with a real observation and with a solution method for the base problem
LINK
Introduction: Retrospective studies suggest that a rapid initiation of treatment results in a better prognosis for patients in the emergency department. There could be a difference between the actual medication administration time and the documented time in the electronic health record. In this study, the difference between the observed medication administration time and documentation time was investigated. Patient and nurse characteristics were also tested for associations with observed time differences. Methods: In this prospective study, emergency nurses were followed by observers for a total of 3 months. Patient inclusion was divided over 2 time periods. The difference in the observed medication administration time and the corresponding electronic health record documentation time was measured. The association between patient/nurse characteristics and the difference in medication administration and documentation time was tested with a Spearman correlation or biserial correlation test. Results: In 34 observed patients, the median difference in administration and documentation time was 6.0 minutes (interquartile range 2.0-16.0). In 9 (26.5%) patients, the actual time of medication administration differed more than 15 minutes with the electronic health record documentation time. High temperature, lower saturation, oxygen-dependency, and high Modified Early Warning Score were all correlated with an increasing difference between administration and documentation times. Discussion: A difference between administration and documentation times of medication in the emergency department may be common, especially for more acute patients. This could bias, in part, previously reported time-to-treatment measurements from retrospective research designs, which should be kept in mind when outcomes of retrospective time-to-treatment studies are evaluated.
DOCUMENT
Stroke is the second most common cause of death and the third leading cause of disability worldwide,1,2 with the burden expected to increase during the next 20 years.1 Almost 40% of the people with stroke have a recurrent stroke within 10 years,3 making secondary prevention vital.3,4 High amounts of sedentary time have been found to increase the risk of cardiovascular disease,5–11 particularly when the sedentary time is accumulated in prolonged bouts.12–15 Sedentary behavior, is defined as “any waking behavior characterized by an energy expenditure ≤1.5 Metabolic Equivalent of Task (METs) while in a sitting, reclining or lying posture”.16,17 Studies in healthy people, as well as people with diabetes and obesity, have shown that reducing the total amount of sedentary time and/or breaking up long periods of uninterrupted sedentary time, reduces metabolic risk factors associated with cardiovascular disease.6,9,10,12–15 Recent studies have shown that people living in the community after stroke spend more time each day sedentary, and more time in uninterrupted bouts of sedentary time compared to age-matched healthy peers.18–20 Reducing sedentary time and breaking up long sedentary bouts with short bursts of activity may be a promising intervention to reduce the risk of recurrent stroke and other cardiovascular diseases in people with stroke. To develop effective interventions, it is important to understand the factors associated with sedentary time in people with stroke. Previous studies have found associations between self-reported physical function after stroke and total sedentary time, but inconsistent results with regards to the relationship of age, stroke severity, and walking speed with sedentary time.20,21 These results are from secondary analyses of single-site observational studies, not powered to address associations, and inconsistent in the methods used to determine waking hours; thus making direct comparisons between studies difficult.20,21 Individual participant data pooling, with consistent processing of wake time data, allows novel exploratory analyses of larger datasets with greater power. By pooling all available individual participant data internationally, this study aimed to comprehensively explore the factors associated with sedentary time in community-dwelling people with stroke. Specifically, our research questions were: (1) What factors are associated with total sedentary time during waking hours after stroke? (2) What factors are associated with time spent in prolonged sedentary bouts during waking hours?
DOCUMENT
Time-access regulations and vehicle restrictions are increasingly used, especially in western Europe, to improve social sustainability in urban areas. These regulations considerably affect the distribution process of retail chain organizations as well as the environmental burden. This paper studies the impact of governmental time windows, vehicle restrictions, and different retailers' logistical concepts on the financial and environmental performance of retailers. We use a case study with two cases that differ in their drop sizes as input for an experiment. The retailers provided all organizational, flow, and cost data of the distribution process between their distribution centers and their stores. We use these data to calculate the impacts of different scenarios on the retailers' financial and environmental performances based on a fractional factorial design in which urban policies and the retailers' logistical concepts are varied, using vehicle routing software. We test the propositions with a third case. We show that the cost impact of time windows is the largest for retailers who combine many deliveries in one vehicle round-trip. The cost increase due to vehicle restrictions is the largest for retailers whose round-trip lengths are restricted by vehicle capacity. Vehicle restrictions and time windows together do not increase a retailer's cost more than individually. Variations in delivery volume and store dispersion hardly influence the impact of urban policy and the retailer's logistical concept decisions. © 2009 INFORMS.
LINK
The purpose of the study was to assess the accuracy of estimates of step frequency from trunk acceleration data analyzed with commonly used algorithms and time window lengths, at a wide range of gait speeds. Twenty healthy young subjects performed an incremental treadmill protocol from 1 km/h up to 6 km/h, with steps of 1 km/h. Each speed condition was maintained for two minutes. A waist worn accelerometer recorded trunk accelerations, while video analysis provided the correct number of steps taken during each gait speed condition. Accuracy of two commonly used signal analysis methods was examined with several different time windows.
DOCUMENT
Local governments in Western Europe increasingly use city time-access regulations to improve social sustainability. These regulations significantly influence the distribution process of retail chain organizations. This paper studies the impact of governmental time-window pressure on retailers' logistical concepts and the consequential financial and environmental distribution performance. We determine which dimensions in the retailer's logistical concept determine its cost and emission sensitivity to increasing time-window pressure. Our research is based on a multiple case study of fourteen Dutch retail cases in different sectors and with different store formulas. The retailers provided all organizational, flow and cost data of their secondary distribution (between distribution center and stores). We use these data to calculate the impacts of different time-window pressure scenarios, including the current situation, using vehicle routing software. It appears that cost and emissions increases are moderate, when few cities are affected. However, as more cities are affected, costs and emissions increase considerably, particularly if time-window lengths become shorter. Time-windows harmonized between cities lead to fewer negative effects. We find various dimensions that contribute to reducing a retailer's sensitivity to time-window pressure. We formulate conclusions hypothesizing the links between time-window pressure, its effects, and the dimensions that determine these effects. © 2007 Elsevier B.V. All rights reserved.
LINK
Neighborhood image processing operations on Field Programmable Gate Array (FPGA) are considered as memory intensive operations. A large memory bandwidth is required to transfer the required pixel data from external memory to the processing unit. On-chip image buffers are employed to reduce this data transfer rate. Conventional image buffers, implemented either by using FPGA logic resources or embedded memories are resource inefficient. They exhaust the limited FPGA resources quickly. Consequently, hardware implementation of neighborhood operations becomes expensive, and integrating them in resource constrained devices becomes unfeasible. This paper presents a resource efficient FPGA based on-chip buffer architecture. The proposed architecture utilizes full capacity of a single Xilinx BlockRAM (BRAM36 primitive) for storing multiple rows of input image. To get multiple pixels/clock in a user defined scan order, an efficient duty-cycle based memory accessing technique is coupled with a customized addressing circuitry. This accessing technique exploits switching capabilities of BRAM to read 4 pixels in a single clock cycle without degrading system frequency. The addressing circuitry provides multiple pixels/clock in any user defined scan order to implement a wide range of neighborhood operations. With the saving of 83% BRAM resources, the buffer architecture operates at 278 MHz on Xilinx Artix-7 FPGA with an efficiency of 1.3 clock/pixel. It is thus capable to fulfill real time image processing requirements for HD image resolution (1080 × 1920) @103 fcps.
DOCUMENT
Background Movement behaviors (i.e., physical activity levels, sedentary behavior) in people with stroke are not self-contained but cluster in patterns. Recent research identified three commonly distinct movement behavior patterns in people with stroke. However, it remains unknown if movement behavior patterns remain stable and if individuals change in movement behavior pattern over time. Objectives 1) To investigate the stability of the composition of movement behavior patterns over time, and 2) determine if individuals change their movement behavior resulting in allocation to another movement behavior pattern within the first two years after discharge to home in people with a first-ever stroke. Methods Accelerometer data of 200 people with stroke of the RISE-cohort study were analyzed. Ten movement behavior variables were compressed using Principal Componence Analysis and K-means clustering was used to identify movement behavior patterns at three weeks, six months, one year, and two years after home discharge. The stability of the components within movement behavior patterns was investigated. Frequencies of individuals’ movement behavior pattern and changes in movement behavior pattern allocation were objectified. Results The composition of the movement behavior patterns at discharge did not change over time. At baseline, there were 22% sedentary exercisers (active/sedentary), 45% sedentary movers (inactive/sedentary) and 33% sedentary prolongers (inactive/highly sedentary). Thirty-five percent of the stroke survivors allocated to another movement behavior pattern within the first two years, of whom 63% deteriorated to a movement behavior pattern with higher health risks. After two years there were, 19% sedentary exercisers, 42% sedentary movers, and 39% sedentary prolongers. Conclusions The composition of movement behavior patterns remains stable over time. However, individuals change their movement behavior. Significantly more people allocated to a movement behavior pattern with higher health risks. The increase of people allocated to sedentary movers and sedentary prolongers is of great concern. It underlines the importance of improving or maintaining healthy movement behavior to prevent future health risks after stroke.
MULTIFILE
Background and purpose The aim of this study is to investigate changes in movement behaviors, sedentary behavior and physical activity, and to identify potential movement behavior trajectory subgroups within the first two months after discharge from the hospital to the home setting in first-time stroke patients. Methods A total of 140 participants were included. Within three weeks after discharge, participants received an accelerometer, which they wore continuously for five weeks to objectively measure movement behavior outcomes. The movement behavior outcomes of interest were the mean time spent in sedentary behavior (SB), light physical activity (LPA) and moderate to vigorous physical activity (MVPA); the mean time spent in MVPA bouts ≥ 10 minutes; and the weighted median sedentary bout. Generalized estimation equation analyses were performed to investigate overall changes in movement behavior outcomes. Latent class growth analyses were performed to identify patient subgroups of movement behavior outcome trajectories. Results In the first week, the participants spent an average, of 9.22 hours (67.03%) per day in SB, 3.87 hours (27.95%) per day in LPA and 0.70 hours (5.02%) per day in MVPA. Within the entire sample, a small but significant decrease in SB and increase in LPA were found in the first weeks in the home setting. For each movement behavior outcome variable, two or three distinctive subgroup trajectories were found. Although subgroup trajectories for each movement behavior outcome were identified, no relevant changes over time were found. Conclusion Overall, the majority of stroke survivors are highly sedentary and a substantial part is inactive in the period immediately after discharge from hospital care. Movement behavior outcomes remain fairly stable during this period, although distinctive subgroup trajectories were found for each movement behavior outcome. Future research should investigate whether movement behavior outcomes cluster in patterns.
MULTIFILE
This study evaluates the maximum theoretical exposure to radiofrequency (RF) electromag- netic fields (EMFs) from a Fifth-generation (5G) New Radio (NR) base station (BS) while using four commonly used mobile applications: YouTube for video streaming, WhatsApp for voice calls, Instagram for posting pictures and videos, and running a Video game. Three factors that might affect exposure, i.e., distance of the measurement positions from the BS, measurement time, and induced traffic, were examined. Exposure was assessed through both instantaneous and time-averaged extrapolated field strengths using the Maximum Power Extrapolation (MPE) method. The former was calculated for every measured SS-RSRP (Secondary Synchronization Reference Signal Received Power) power sample obtained with a sampling resolution of 1 second, whereas the latter was obtained using a 1-min moving average applied on the applications’ instantaneous extrapolated field strengths datasets. Regarding distance, two measurement positions (MPs) were selected: MP1 at 56 meters and MP2 at 170 meters. Next, considering the measurement time, all mobile application tests were initially set to run for 30 minutes at both MPs, whereas the video streaming test (YouTube) was run for an additional 150 minutes to investigate the temporal evolution of field strengths. Considering the traffic, throughput data vs. both instantaneous and time-averaged extrapolated field strengths were observed for all four mobile applications. In addition, at MP1, a 30-minute test without a User Equipment (UE) device was conducted to analyze exposure levels in the absence of induced traffic. The findings indicated that the estimated field strengths for mobile applications varied. It was observed that distance and time had a more significant impact than the volume of data traffic generated (throughput). Notably, the exposure levels in all tests were considerably lower than the public exposure thresholds set by the ICNIRP guidelines.INDEX TERMS 5G NR, C-band, human exposure assessment, mobile applications, traffic data, maximum extrapolation method, RF-EMF.
MULTIFILE