The aging population faces two conditions that threaten healthy aging: high fat mass (obesity) and low muscle mass and function (sarcopenia). The combination of both—referred to as sarcopenic obesity—synergistically increases the risk of adverse health outcomes. The two conditions often co-occur because they reinforce each other and share common etiologies, including poor nutrition and inactivity. All aging people are at risk of gaining weight and losing muscle mass and could benefit from improvements in physical activity, exercise and dietary intake. one specific window of opportunity is during the transient time of retirement, as older adults already need to restructure their daily activities. It is key to change lifestyle behavior in a sustainable manner, providing scientifically proven, personalized, and acceptable principles that can be integrated in daily life. Health technologies (e.g., applications) can provide promising tools to deliver personalized and appealing lifestyle interventions to a large group of people while keeping health care costs low. Several studies show that health technologies have a strong positive effect on physical activity, exercise and dietary intake. Specifically, health technology is increasingly applied to older people, although strong evidence for long term effects in changing lifestyle behavior is generally lacking. Concluding, technology could play an important role in the highly warranted prevention of sarcopenic obesity in older adults. Although health technology seems to be a promising tool to stimulate changes in physical activity, exercise and dietary intake, studies on long lasting effects and specifically targeted on older people around the time of retirement are warranted.
In case of a major cyber incident, organizations usually rely on external providers of Cyber Incident Response (CIR) services. CIR consultants operate in a dynamic and constantly changing environment in which they must actively engage in information management and problem solving while adapting to complex circumstances. In this challenging environment CIR consultants need to make critical decisions about what to advise clients that are impacted by a major cyber incident. Despite its relevance, CIR decision making is an understudied topic. The objective of this preliminary investigation is therefore to understand what decision-making strategies experienced CIR consultants use during challenging incidents and to offer suggestions for training and decision-aiding. A general understanding of operational decision making under pressure, uncertainty, and high stakes was established by reviewing the body of knowledge known as Naturalistic Decision Making (NDM). The general conclusion of NDM research is that experts usually make adequate decisions based on (fast) recognition of the situation and applying the most obvious (default) response pattern that has worked in similar situations in the past. In exceptional situations, however, this way of recognition-primed decision-making results in suboptimal decisions as experts are likely to miss conflicting cues once the situation is quickly recognized under pressure. Understanding the default response pattern and the rare occasions in which this response pattern could be ineffective is therefore key for improving and aiding cyber incident response decision making. Therefore, we interviewed six experienced CIR consultants and used the critical decision method (CDM) to learn how they made decisions under challenging conditions. The main conclusion is that the default response pattern for CIR consultants during cyber breaches is to reduce uncertainty as much as possible by gathering and investigating data and thus delay decision making about eradication until the investigation is completed. According to the respondents, this strategy usually works well and provides the most assurance that the threat actor can be completely removed from the network. However, the majority of respondents could recall at least one case in which this strategy (in hindsight) resulted in unnecessary theft of data or damage. Interestingly, this finding is strikingly different from other operational decision-making domains such as the military, police and fire service in which there is a general tendency to act rapidly instead of searching for more information. The main advice is that training and decision aiding of (novice) cyber incident responders should be aimed at the following: (a) make cyber incident responders aware of how recognition-primed decision making works; (b) discuss the default response strategy that typically works well in several scenarios; (c) explain the exception and how the exception can be recognized; (d) provide alternative response strategies that work better in exceptional situations.
The following paper presents an innovative approach for dealing with complex capacity problems in aviation. We introduce a sliding window framework composed by an optimization method with a simulation component. By applying this framework in diverse problems that are dependent on time it is possible to find feasible and close-to-reality solutions in shorter time than the ones that could be achieved by evaluating the problem in the complete time-horizon. The framework can be applied to solve diverse problems in aviation or similar industries. We exemplify the approach with a model of Paris Charles de Gaulle Airport in France.
MULTIFILE
12/31/2017