From the article: "This article evaluates the application of blockchain technology to improve organic or fair-trade food traceability from “Farm to Fork” in light of European regulations. This study aims to shed light on the challenges in the organic food chain to overcome, the drivers for blockchain technology, and the challenges in current projects."
DOCUMENT
From the article: Abstract Since more and more business rules management solutions are utilized, organizations search for guidance to design such solutions. Principles are often applied to guide the design of information systems in general. Scientific research on principles for business rules management is limited. The purpose of this paper is to specify, classify, and validate design principles that can be applied to guide the design of a business rules management solution. We conducted a three round focus group and three round Delphi Study, which led to the identification of 22 principles. These 22 principles can be clustered into four categories: 1) deep structure principles, 2) physical structure principles, 3) surface structure principles, and 4) organizational structure principles. Our results provide a framework for the design and analysis of business rules management solutions.
LINK
Purpose – In the domain of healthcare, both process efficiency and the quality of care can be improved through the use of dedicated pervasive technologies. Among these applications are so-called real-time location systems (RTLS). Such systems are designed to determine and monitor the location of assets and people in real time through the use of wireless sensor networks. Numerous commercially available RTLS are used in hospital settings. The nursing home is a relatively unexplored context for the application of RTLS and offers opportunities and challenges for future applications. The paper aims to discuss these issues. Design/methodology/approach – This paper sets out to provide an overview of general applications and technologies of RTLS. Thereafter, it describes the specific healthcare applications of RTLS, including asset tracking, patient tracking and personnel tracking. These overviews are followed by a forecast of the implementation of RTLS in nursing homes in terms of opportunities and challenges. Findings – By comparing the nursing home to the hospital, the RTLS applications for the nursing home context that are most promising are asset tracking of expensive goods owned by the nursing home in orderto facilitate workflow and maximise financial resources, and asset tracking of personal belongings that may get lost due to dementia. Originality/value – This paper is the first to provide an overview of potential application of RTLS technologies for nursing homes. The paper described a number of potential problem areas that can be addressed by RTLS. Published by Emerald Publishing Limited Original article: https://doi.org/10.1108/JET-11-2017-0046 For this paper Joost van Hoof received the Highly Recommended Award from Emerald Publishing Ltd. in October 2019: https://www.emeraldgrouppublishing.com/authors/literati/awards.htm?year=2019
MULTIFILE
A major challenge in the textile sector is achieving true circularity while preventing fraud, including false sustainability claims and material mislabelling. The complexity of supply chains and outdated certification systems have resulted in a lack of accountability and transparency. This project addresses these issues by developing and implementing Digital Product Passports, integrated with digital trust mechanisms as verifiable credentials, to create a transparent, responsible, and accountable textile supply chain. The project traces the journey of a corporate fashion t-shirt from cotton sourcing in India to production and distribution in the Netherlands, ensuring full transparency and traceability. Its goal is to drive a shift towards a circular economy by fostering collaboration across the supply chain and empowering stakeholders, particularly Tiers 3 and 4 in the Global South. Schijvens Corporate Fashion leads the effort with regenerative cotton sourcing through Raddis®Cotton, utilising Aware™’s technology solution. Adopting a ‘Fibre-Forward’ approach, the consortium ensures traceability by integrating data from raw material sourcing to end-user. This approach benefits all stakeholders, from farmers to garment producers, by providing verifiable information on fibre origins, social conditions, and ecological impacts. By tracking each fibre and collecting direct data, the project removes the opacity that can undermine sustainability claims. The project enhances accountability and sustainability compliance by utilising decentralised technologies for product verification. Integrating digital identity wallets for individuals and organisations, secured with verifiable credentials, enhances trust and accountability, fostering circular economy practices. Rather than seeing DPPs as the end goal, the project views them as catalysts for systemic change. It prioritises continuous improvement, collaboration, and shared benefits, aiming to establish a regenerative circular economy. Through a practical toolkit, the project will help organisations and policymakers navigate DPP adoption, strengthening transparency and creating a scalable, inclusive system for supply chains across the Global South and -North.
To enable circularity new tools are needed. Regulatory compliance with the European Commission has introduced the Digital Product Passport (DPP) as part of the Ecodesign for Sustainable Products Regulation (ESPR). This framework requires traceability across all production tiers, including Tier 4, which covers raw material origins. The textile clothing leather and footwear (TCLF) sector has been identified as priority categories for DPP adoption, with mandatory compliance set between 2027 and 2030. DPP system standardizes lifecycle value chain data and includes information on material origin, manufacturing, assembly, and end-of-life handling. For the Dutch textile sector, comprising of almost 11,000 companies, DPP implementation presents significant challenges due to fragmented data infrastructure and long product lifecycles. Traditional identifiers (e.g., QR-codes, RFID) are often damaged or removed, limiting their effectiveness. Molecular characterization—using established techniques like spectral and chemical analysis—is emerging as the only reliable long-term solution for persistent, product-embedded identification. These molecular methods allow precise validation of fiber content, wear analysis, and recyclability, addressing compliance and end-of-life traceability issues. The Molecular Digital Physical Digital Product Passport (M-DPP) initiative demonstrates a practical application of these techniques for wool and cotton. It employs co-design to ensure regulatory alignment and develops an open-source API to support automated validation, extended producer responsibility (EPR), return and reuse (RE), textile lifecycle recovery (TLR), and material sorting and recycling (MSR). Smart contract functionality enables automated execution within deposit-refund systems, improving traceability and circularity. An iterative, design-thinking methodology underpins system development, ensuring adaptability to evolving standards. Pilot testing in collaboration with fashion and interior partners will validate the molecular sensing and data integration approach. Dissemination and scaling will occur through partnerships with NewTexEco, Circolab, DCTV, and TNO’s Center of Excellence for DPPs, aligning with European standardization efforts and enabling sector-wide adoption.