For long flights, the cruise is the longest phase and where the largest amount of fuel is consumed. An in-cruise optimization method has been implemented to calculate the optimal trajectory that reduces the flight cost. A three-dimensional grid has been created, coupling lateral navigation and vertical navigation profiles. With a dynamic analysis of the wind, the aircraft can perform a horizontal deviation or change altitudes via step climbs to reduce fuel consumption. As the number of waypoints and possible step climbs is increased, the number of flight trajectories increases exponentially; thus, a genetic algorithm has been implemented to reduce the total number of calculated trajectories compared to an exhaustive search. The aircraft’s model has been obtained from a performance database, which is currently used in the commercial flight management system studied in this paper. A 5% average flight cost reduction has been obtained.
MULTIFILE
Aircraft require significant quantities of fuel in order to generate the power required to sustain a flight. Burning this fuel causes the release of polluting particles to the atmosphere and constitutes a direct cost attributed to fuel consumption. The optimization of various aircraft operations in different flight phases such as cruise and descent, as well as terminal area movements, have been identified as a way to reduce fuel requirements, thus reducing pollution. The goal of this chapter is to briefly explain and apply different metaheuristic optimization algorithms to improve the cruise flight phase cost in terms of fuel burn. Another goal is to present an overview of the most popular commercial aircraft models. The algorithms implemented for different optimization strategies are genetic algorithms, the artificial bee colony, and the ant colony algorithm. The fuel burn aircraft model used here is in the form of a Performance Database. A methodology to create this model using a Level D aircraft research flight simulator is briefly explained. Weather plays an important role in flight optimization, and so this work explains a method for incorporating open source weather. The results obtained for the optimization algorithms show that every optimization algorithm was able to reduce the flight consumption, thereby reducing the pollution emissions and contributing to airlines’ profit margins.
DOCUMENT
Longitudinal criminological studies greatly improved our understanding of the longitudinal patterns of criminality. These studies, however, focused almost exclusively on traditional types of offending and it is therefore unclear whether results are generalizable to online types of offending. This study attempted to identify the developmental trajectories of active hackers who perform web defacements. The data for this study consisted of 2,745,311 attacks performed by 66,553 hackers and reported to Zone-H between January 2010 and March 2017. Semi-parametric group-based trajectory models were used to distinguish six different groups of hackers based on the timing and frequency of their defacements. The results demonstrated some common relationships to traditional types of crime, as a small population of defacers accounted for the majority of defacements against websites. Additionally, the methods and targeting practices of defacers differed based on the frequency with which they performed defacements generally.
DOCUMENT