The academic and professional attention to the large synergies hidden in horizontal collaborations is increasing. This study attempts to address the impact of collaborative transport on transportation lead-time and lead-time variability through empirically investigating a group of SMEs involved in a collaborative distribution network. Data was collected for seven pre-cooperation and eight cooperative orders over a period of 14 months. The results of Mann-Whitney U-test show a significant average reduction of 30.8% in the duration of lead times. Lead-time variability was also found to be reduced as the result of changes in the coefficient of variances and the Bartlett’s test for homogeneity of variances. Horizontal collaboration in transport could eventually lead to reduced lead times and lower variability of lead time which results in reduced supply chain costs. This can be achieved by means of direct routing and avoiding multi-transshipment routes which reduces the uncertainty and variability by diminishing the number of stages in the transport chain. Thus, effective lead-time management is considered a source of competitive advantage as it can reduce supply chain costs by lowering inventory levels, but is also capable of improving performance and customer service by offering improved product quality service levels.
Technological development from horse-drawn carriages to the new Airbus A380 has led to a remarkable increase in both the capacity and speed of tourist travel. This development has an endogenous systemic cause and will continue to increase carbon dioxide emissions/energy consumption if left unchecked. Another stream of technological research and development aims at reducing pollution and will reduce emissions per passenger-kilometer, but suffers from several rebound effects. The final impact on energy consumption depends on the strength of the positive and negative feedback in the technology system of tourism transport. However, as the core tourism industry including tour operators, travel agencies, and, accommodation has a strong link with air transport, it is unlikely that technological development without strong social and political control will result in delivering the emission reductions required for avoiding dangerous climate change.
It is expected that future transportation technologies will positively impact how passengers travel to their destinations. Europe aims to integrate air transport into the overall multimodal transport network to provide better service to passengers, while reducing travel time and making the network more resilient to disruptions. This study presents an approach that investigates these aspects by developing a simulation platform consisting of different models, allowing us to simulate the complete door-to-door trajectory of passengers. To address the future potential, we devised scenarios considering three time horizons: 2025, 2035, and 2050. The experimental design allowed us to identify potential obstacles for future travel, the impact on the system’s resilience, and how the integration of novel technology affects proxy indicators of the level of service, such as travel time or speed. In this paper, we present for the first time an innovative methodology that enables the modelling and simulation of door-to-door travel to investigate the future performance of the transport network. We apply this methodology to the case of a travel trajectory from Germany to Amsterdam considering a regional and a hub airport; it was built considering current information and informed assumptions for future horizons. Results indicate that, with the new technology, the system becomes more resilient and generally performs better, as the mean speed and travel time are improved. Furthermore, they also indicate that the performance could be further improved considering other elements such as algorithmic governance.