Summary Project objectives This study fits into a larger research project on logistics collaboration and outsourcing decisions. The final objective of this larger project is to analyze the logistics collaboration decision in more detail to identify thresholds in these decisions. To reach the overall objectives, the first step is to get a clearer picture on the chemical and logistics service providers industry, sectors of our study, and on logistics collaboration in these sectors. The results of this first phase are presented in this report. Project Approach The study consists of two parts: literature review and five case studies within the chemical industry. The literature covers three topics: logistics collaboration, logistics outsourcing and purchasing of logistics services. The five case studies are used to refine the theoretical findings of the literature review. Conclusions Main observations during the case studies can be summarized as follows: Most analyzed collaborative relationships between shippers and logistics service providers in the chemical industry are still focused on operational execution of logistics activities with a short term horizon. Supply management design and control are often retained by the shippers. Despite the time and cost intensive character of a logistics service buying process, shippers tendering on a very regular basis. The decision to start a new tender project should more often be based on an integral approach that includes all tender related costs. A lower frequency of tendering could create more stability in supply chains. Beside, it will give both, shippers and LSPs, the possibility to improve the quality of the remaining projects. Price is still a dominating decision criterion in selecting a LSP. This is not an issue as long as the comparison of costs is based on an integral approach, and when shippers balance the cost criterion within their total set of criteria for sourcing logistics services. At the shippers' side there is an increased awareness of the need of more solid collaboration with logistics service providers. Nevertheless, in many cases this increased awareness does not actually result in the required actions to establish more intensive collaboration. Over the last years the logistics service providers industry was characterized by low profit margins, strong fragmentation and price competition. Nowadays, the market for LSPs is changing, because of an increasing demand for logistics services. To benefit from this situation a more pro-active role of the service providers is required in building stronger relationships with their customers. They should pay more attention on mid and long term possibilities in a collaborative relation, in stead of only be focused on running the daily operation.
DOCUMENT
Collaboration between university and industry has brought societal and educational benefits by promoting research and innovation, providing industry training, and promoting access to resources and technology for both academia and industry. University, industry, and government collaboration known as the triple helix was proposed in the 1990s. However, industry and university collaboration has had a long history with best practices being updated as we learn more about specific fields, needs of collaborators, and advances in research and technology.This case study aims to find the best practices for collaboration between education and industry in a project-based educational program known as Professional Practice for students studying in the field of information technology. During this four-week program, students worked on assignments formulated by the participating companies. They were guided by company-assigned supervisors, who were interviewed before and after the program. The students too were asked to fill out surveys before and after the program. From the analyses of the results of the interviews and surveys, several recommendations and ways to improve collaboration between education and industry are presented.
MULTIFILE
This paper explores how, in the light of global economic downturn and rising student populations, new academic-industrial models for research collaboration based upon specific technological expertise and knowledge can be developed as potential mechanisms for preserving and extending central university research infrastructure. The paper explores two case studies that focus upon the new serious games sector: the UK-based Coventry University's Serious Games Institute - a hybrid model of applied research and business, and the Netherlands-based TU-Delft University's Serious Game Center - a networked model of semi-commercial funding and public-private co-operation between industry, public sector and research partners. To facilitate these kinds of academic-industrial collaborations, the paper introduces the Innovation Diffusion Model (IDM) which promotes innovation diffusion by bringing academic and industrial experts into close proximity. Overall, the benefits include: sustained intellectual property development and publication opportunities for academics, employment creation, accelerated development and real commercial benefits for industrial partners.
DOCUMENT
Nowadays companies need higher educated engineers to develop their competences to enable them to innovate. This innovation competence is seen as a remedy for the minor profitable business they do during the financial crises. Innovation is an element to be developed on the one hand for big companies as well as for small-and-medium sized companies through Europe to overcome this crisis. The higher education can be seen as an institution where youngsters, coming from secondary schools, who choose to learn at higher education to realize their dream, what they like to become in the professional world. The tasks of the Universities of applied Sciences are to prepare these youngsters to become starting engineers doing their job well in the companies. Companies work for a market, trying to manufacture products which customers are willing to pay for. They ask competent employees helping achieving this goal. It is important these companies inform the Universities of applied Sciences in order to modify their educational program in such a way that the graduated engineers are learning the latest knowledge and techniques, which they need to know doing their job well. The Universities of applied Sciences of Oulu (Finland) and Fontys Eindhoven (The Netherlands) are working together to experience possibilities to qualify their students on innovation development in an international setting. In the so-called: ‘Invention Project’, students are motivated to find their own invention, to design it, to prepare this idea for prototyping and to really manufacture it. Organizing the project, special attention is given to communication protocol between students and also between teachers. Students have meetings on Thursday every week through Internet connection with the communication program OPTIMA, which is provided by the Oulu University. Not only the time difference between Finland and the Netherlands is an issue to be organized also effective protocols how to provide each other relevant information and also how to make in an effective way decisions are issues. In the paper the writers will present opinions of students, teachers and also companies in both regions of Oulu and Eindhoven on the effectiveness of this project reaching the goal students get more experienced to set up innovative projects in an international setting. The writers think this is an important and needed competence for nowadays young engineers to be able to create lucrative inventions for companies where they are going to work for. In the paper the writers also present the experiences of the supervising conditions during the project. The information found will lead to success-factors and do’s and don’ts for future projects with international collaboration.
DOCUMENT
Integrating knowledge and expertise from designers and scientists proposes solutions to complex problems in a flexible and open-minded way. However, little insight is available in how this collaboration works. Therefore, we reflected on a research project aimed at supportive care interventions for child oncology, and detected barriers and enablers for effective designer scientist collaboration. We interviewed medical scientists (n=2), designers (n=5), health care professionals (n=2), design students (n=3), and one design innovation-expert. Enablers appeared a receptive attitude towards innovation, and shared terminology facilitated by participatory design tools, internal communication means, and common goals. Largest barrier was unstable team membership. Future collaborative research projects might benefit when preventing barriers and stimulating enablers.
DOCUMENT
Nowadays companies need higher educated engineers to develop their competences to enable them to innovate. This innovation competence is seen as a remedy for the minor profitable business they do during the financial crises. Innovation is an element to be developed on the one hand for big companies as well as for small-and-medium sized companies through Europe to overcome this crisis. The higher education can be seen as an institution where youngsters, coming from secondary schools, who choose to learn at higher education to realize their dream, what they like to become in the professional world. The tasks of the Universities of applied Sciences are to prepare these youngsters to become starting engineers doing their job well in the companies. Companies work for a market, trying to manufacture products which customers are willing to pay for. They ask competent employees helping achieving this goal. It is important these companies inform the Universities of applied Sciences in order to modify their educational program in such a way that the graduated engineers are learning the latest knowledge and techniques, which they need to know doing their job well. The Universities of applied Sciences of Oulu (Finland) and Fontys Eindhoven (The Netherlands) are working together to experience possibilities to qualify their students on innovation development in an international setting. In the socalled: ‘Invention Project’, students are motivated to find their own invention, to design it, to prepare this idea for prototyping and to really manufacture it. Organizing the project, special attention is given to communication protocol between students and also between teachers. Students have meetings on Thursday every week through Internet connection with the communication program OPTIMA, which is provided by the Oulu University. Not only the time difference between Finland and the Netherlands is an issue to be organized also effective protocols how to provide each other relevant information and also how to make in an effective way decisions are issues. In the paper the writers will present opinions of students, teachers and also companies in both regions of Oulu and Eindhoven on the effectiveness of this project reaching the goal students get more experienced to set up innovative projects in an international setting. The writers think this is an important and needed competence for nowadays young engineers to be able to create lucrative inventions for companies where they are going to work for. In the paper the writers also present the experiences of the supervising conditions during the project. The information found will lead to successfactors and do’s and don’ts for future projects with international collaboration.
DOCUMENT
DOCUMENT
Het doel van dit proefschrift betrof het verkennen van attituden en afwegingen rond taakherschikking tussen tandartsen en mondhygiënisten. Daarnaast werd nagegaan welke sociale kenmerken studenten toeschrijven aan elkaar, zichzelf en beide beroepsgroepen. Vervolgens werd het effect van een psychologische interventie in een onderwijssetting onderzocht op interprofessionele communicatie en percepties ten aanzien van interprofessionele taakverdeling. Tandartsen en mondhygiënisten hebben verschillende attituden ten opzichte van taakherschikking, vooral wat betreft de vrijgevestigde praktijk van mondhygiënisten. Dit laatste wordt het minst gewenst door tandartsen. Tandartsen en mondhygiënisten hebben verschillende afwegingen wanneer men een voor- of tegenstander is van dit beleid. De interprofessionele relatie tussen tandartsen en mondhygiënisten komt tot uiting in de attributie van specifieke sociale kenmerken. Tandheelkunde en mondzorgkunde studenten zijn beide de mening toegedaan dat tandartsen meer dominant zijn dan mondhygiënisten. Het faciliteren van interprofessionele groepsvorming kan zowel interprofessionele hiërarchie als tandarts-gecentreerde taakverdeling reduceren. Tijdens het eerste onderzoek (Hoofdstuk 2) werden verschillen tussen tandartsen en mondhygiënisten ontdekt ten aanzien van de taakuitbreiding van de mondhygiënist. De helft van alle tandartsen en de meeste mondhygiënisten hebben hierover een positieve attitude. Een interprofessionele kloof werd gevonden ten aanzien van de zelfstandige praktijkvoering van mondhygiënisten. Een minderheid van alle tandartsen heeft hierover een positieve attitude vergeleken met een meerderheid van alle mondhygiënisten. Dit suggereert dat de acceptatie van een zelfstandige mondhygiënist een groot obstakel is wanneer men taakherschikking wil implementeren. Tandartsen willen controle over de mondhygiënist behouden, daarom is het waarschijnlijk dat taakdelegatie boven taaksubstitutie wordt verkozen. Dit laatste betreft taakherschikking met professionele autonomie.
DOCUMENT
The ever increasing technological developments and greater demands from our society for qualitative better, safer, sustainable products, processes and systems are pushing the boundaries of what is possible from an engineer’s perspective. Besides the (local) grand challenges in energy, sustainability, health and mobility the world is getting smaller due to advances in communication and digitalization. The exponential increase of complexity and data driven systems (big data) which are integrated and connected to different networks calls for rethinking and inventing new business models [1]. To stay competitive in the world OEM’s and SME’s have to develop breakthrough technological, innovative and advanced systems and processes. These changes have a major impact on engineering education. The industry needs engineers with different competences and skills to fulfil the challenges and demands mentioned earlier. Universities should follow up on these changes and can only deliver and prepare the engineers of the future by close collaboration with the high tech industry. Fontys University is fully aware of this and developed a Centre of Expertise in High Tech Systems & Materials (CoE HTSM) to close the gap between the university and industry. This CoE is a public-private cooperation where applied research, projects and educational programs for different curricula are being developed and executed. By making the industry partner and giving them a role within the university, the engineering education programs and the future engineering profile can be better aligned in a faster and more structural way.
DOCUMENT
Designers move more and more in the direction of Service Design, in which frequently a participatory or co-design approach is used to involve service providers in the design process. The designerprovider relationship in such Service Design processes differs in four aspects from traditional client-relationships: The relationship is 1) more dynamic and interactive, 2) based on collaboratively evolving ideas and ambitions, 3) focusing on the process of innovation, rather than on the outcome, and 4) frequently based on extrinsic motivation for innovation or on fuzzy starting points. Designers experience difficulties in persuading service providers of the importance of such a collaborative approach, while providers are not familiar with this kind of approach and their organizations are not ready for such a kind of collaboration. This paper positions designer-provider relationship in Service Design processes in literature and describes a research proposal for the development of an efficient and effective participatory design intervention that stimulates collaboration between designers and service providers.
DOCUMENT