This paper examines how a serious game approach could support a participatory planning process by bringing stakeholders together to discuss interventions that assist the development of sustainable urban tourism. A serious policy game was designed and played in six European cities by a total of 73 participants, reflecting a diverse array of tourism stakeholders. By observing in-game experiences, a pre- and post -game survey and short interviews six months after playing the game, the process and impact of the game was investigated. While it proved difficult to evaluate the value of a serious game approach, results demonstrate that enacting real-life policymaking in a serious game setting can enable stakeholders to come together, and become more aware of the issues and complexities involved with urban tourism planning. This suggests a serious game can be used to stimulate the uptake of academic insights in a playful manner. However, it should be remembered that a game is a tool and does not, in itself, lead to inclusive participatory policymaking and more sustainable urban tourism planning. Consequently, care needs to be taken to ensure inclusiveness and prevent marginalization or disempowerment both within game-design and the political formation of a wider participatory planning approach.
MULTIFILE
With the rise of chronic diseases as the number one cause of death and disability among urban populations, it has become increasingly important to design for healthy environments. There is, however, a lack of interdisciplinary approaches and solutions to improve health and well-being through urban planning and design. This case study offers an HCI solution and approach to design for healthy urban structures and dynamics in existing neighborhoods. We discuss the design process and design of ROOT, an interactive lighting system that aims to stimulate walking and running through supportive, collaborative and social interaction.
DOCUMENT
Post-war urban neighbourhoods in industrialised countries have been shown to negatively affect the lifestyles of their residents due to their design. This study aims at developing an empirical procedure to select locations to be redesigned and the determinants of health at stake in these locations, with involvement of residents’ perspectives as core issue. We addressed a post-war neighbourhood in the city of Groningen, the Netherlands. We collected data from three perspectives: spatial analyses by urban designers, interviews with experts in local health and social care (n = 11) and online questionnaires filled in by residents (n = 99). These data provided input for the selection of locations to be redesigned by a multidisciplinary team (n = 16). The procedure yielded the following types of locations (and determinants): An area adjacent to a central shopping mall (social interaction, traffic safety, physical activity), a park (experiencing green, physical activity, social safety, social interaction) and a block of low-rise row houses around a public square (social safety, social interaction, traffic safety). We developed an empirical procedure for the selection of locations and determinants to be addressed, with addressing residents’ perspectives. This procedure is potentially applicable to similar neighbourhoods internationally.
DOCUMENT
Urban professionals need streamlined methods for identifying climate risks and prioritising equitable adaptation solutions in an inclusive, participatory way. The Netherlands' national discourse on climate adaptation highlights the need to protect the most vulnerable groups. However, current adaptation conventions rely heavily on biophysical data to locate climate hazards through 'stress tests' and prioritise adaptation based on existing infrastructure projects and political agendas. This approach often marginalises vulnerable groups and evades community engagement, resulting in inequitable outcomes. ENGAGED, the Equity Nexus of Governance, Adaptation Planning & Design for Urban Climate Resilience, proposes a novel practice-oriented approach where theoretical knowledge on equitable climate adaptation is empirically tested and applied to the Dutch context, emphasising trans-disciplinarity and equity, aiming to maximise impact. We will assess neighbourhood and block-level risks by extending the 'stress tests' to include demographic, cultural, socio-economic, and health indicators along with biophysical and climate data. We will identify adaptation opportunities that align with diverse planning agendas and prioritise projects based on potential linkages-benefits, and equity considerations. By collaborating with practitioners and community groups, we aim to gain valuable insights and confirm the effectiveness of our approach. The project will explore stakeholder engagement strategies to determine suitable adaptation solutions and identify governance barriers to adoption. We aim to facilitate equitable climate adaptation governance, planning, and design supporting municipalities to serve vulnerable groups more effectively and promote climate justice. ENGAGED will build upon research into climate adaptation and socio-economic issues from a range of projects, including the ZonMW Wijkaanpak Hitte, BEAT THE HEAT, Interreg Cool Cities, Horizon Up2030, KIN Accelerating Just Climate Transitions, NWO Citizen participation in climate adaptation, Interreg Cool Towns, and Buurtdashboard, Sociale kwetsbaarheid hitte and Wijktypen (KlimaatEffectAtlas).
Nature areas in North-West Europe (NWE) face an increasing number of visitors (intensified by COVID-19) resulting in an increased pressure on nature, negative environmental impacts, higher management costs, and nuisance for local residents and visitors. The high share of car use exaggerates these impacts, including peak pressures. Furthermore, the almost exclusive access by car excludes disadvantaged people, specifically those without access to a car. At the same time, the urbanised character of NWE, its dense public transport network, well-developed tourism & recreation sector, and presence of shared mobility providers offers ample opportunities for more sustainable tourism. Thus, MONA will stimulate sustainable tourism in and around nature areas in NWE which benefits nature, the environment, visitors, and the local economy. MONA will do so by encouraging a modal shift through facilitating sustainableThe pan-European Innovation Action, funded under the Horizon Europe Framework Programme, aims to promote innovative governance processes ,and help public authorities in shaping their climate mitigation and adaptation policies. To achieve this aim, the GREENGAGE project will leverage citizens’ participation and equip them with innovative digital solutions that will transform citizen’s engagement and cities’ effectiveness in delivering the European Green Deal objectives for carbon neutral cities.Focusing on mobility, air quality and healthy living, citizens will be inspired to observe and co-create their cities by sensing their urban environments. The aim to complement, validate, and enrich information in authoritative data held by the public administrations and public agencies. This will be facilitated by engaging with citizens to co-create green initiatives and to develop Citizen Observatories. In GREENGAGE, Citizen Observatories will be a place where pilot cities will co-examine environmental issues integrating novel bottom-up process with top-down perspectives. This will provide the basis to co-create and co-design innovative solutions to monitor environmental problems at ground level with the help of citizens.With two interrelated project dimensions, the project aims to enhance intelligence applied to city decision-making processes and governance by engaging with citizen observations integrated with Copernicus, GEOSS, in-situ, and socio-economic intelligence, and by delivering innovative governance models based on novel toolboxes of decision-making methodologies and technologies. The envisioned citizens observatory campaigns will be deployed and fully demonstrated in 5 pilot engagements in selected European cities and regions including: Bristol (the United Kingdom), Copenhagen (Denmark), Turano / Gerace (Italy) and the region of Noord Brabant (the Netherlands). These innovation pilots aim to highlight the need for smart city governance by promoting citizen engagement, co-creation, gathering new data which will complement existing datasets and evidence-based decision and policymaking.
As climate change accelerates, rising sea levels pose challenges for low-lying nations like the Netherlands. Floating developments (such as homes, solar parks, and pavilions) are considered the most climate adaptative solution for the future, but the effects on the environment are unknown which is holding back this floating transformation. Since public and private partners are not able to answer questions on the effect of floating urbanisation on the environment and water quality based on speculations by models without field data, permits are given only after proof that ecological & water quality will not affected (also EU warnings ‘deteriorating’ water quality (UvW 2025, EU 2025). This proposal aims to develop an innovative autonomous docking station for aquatic drones, enhancing environmental monitoring of floating structures. Only a few monitoring campaigns measured the impact of small floating structures (small structures and only basic parameters). Traditional monitoring methods rely on manual sampling and static sensors, which are costly, labour-intensive, and provide delayed results. A new study, led by Hanze with Gemeente Rotterdam, Waternet (Gemeente Amsterdam) and Indymo, will assess the impact of new large-scale floating developments with a new method. Autonomous aquatic drones improve data resolution but face operational challenges such as battery life and data retrieval. An innovating docking station will address these issues by enabling drones to recharge, offload data, and perform continuous missions without human intervention. Advanced tools—including aquatic drones, 360-degree cameras, sonar imaging, and real-time sensors—will collect high-resolution environmental data also monitoring biodiversity and bathymetry. The proposed docking station will support real-time sensor networks, allowing for spatial and temporal data collection. It will improve the (cost) efficiency and quality of long-term environmental monitoring, providing insights into water quality dynamics and underwater ecosystems in Rotterdam and Amsterdam as an international example of floating development in the battle of climate change.