BACKGROUND: Maintaining a healthy lifestyle is important for wheelchair users' well-being, as it can have a major impact on their daily functioning. Mobile health (mHealth) apps can support a healthy lifestyle; however, these apps are not necessarily suitable for wheelchair users with spinal cord injury or lower limb amputation. Therefore, a new mHealth app (WHEELS) was developed to promote a healthy lifestyle for this population.OBJECTIVE: The objectives of this study were to develop the WHEELS mHealth app, and explore its usability, feasibility, and effectiveness.METHODS: The WHEELS app was developed using the intervention mapping framework. Intervention goals were determined based on a needs assessment, after which behavior change strategies were selected to achieve these goals. These were applied in an app that was pretested on ease of use and satisfaction, followed by minor adjustments. Subsequently, a 12-week pre-post pilot study was performed to explore usability, feasibility, and effectiveness of the app. Participants received either a remote-guided or stand-alone intervention. Responses to semistructured interviews were analyzed using content analysis, and questionnaires (System Usability Score [SUS], and Usefulness, Satisfaction, and Ease) were administered to investigate usability and feasibility. Effectiveness was determined by measuring outcomes on physical activity, nutrition, sleep quality (Pittsburgh Sleep Quality Index), body composition, and other secondary outcomes pre and post intervention, and by calculating effect sizes (Hedges g).RESULTS: Sixteen behavior change strategies were built into an app to change the physical activity, dietary, sleep, and relaxation behaviors of wheelchair users. Of the 21 participants included in the pilot study, 14 participants completed the study. The interviews and questionnaires showed a varied user experience. Participants scored a mean of 58.6 (SD 25.2) on the SUS questionnaire, 5.4 (SD 3.1) on ease of use, 5.2 (SD 3.1) on satisfaction, and 5.9 (3.7) on ease of learning. Positive developments in body composition were found on waist circumference (P=.02, g=0.76), fat mass percentage (P=.004, g=0.97), and fat-free mass percentage (P=.004, g=0.97). Positive trends were found in body mass (P=.09, g=0.49), BMI (P=.07, g=0.53), daily grams of fat consumed (P=.07, g=0.56), and sleep quality score (P=.06, g=0.57).CONCLUSIONS: The WHEELS mHealth app was successfully developed. The interview outcomes and usability scores are reasonable. Although there is room for improvement, the current app showed promising results and seems feasible to deploy on a larger scale.
De Digitale Universiteit (DU) performed a quickscan to determine the usability of the IMS Question and Test Interoperability (QTI) specification as a format to store questions and tests developed for and by the consortium. The original report is available in Dutch from the website of De Digitale Universiteit. This is an unofficial translation in English of that report.
In this chapter, I look back at the implementation of W12-16, a major reform of mathematics education in the lower grades of general secondary education and pre-vocational secondary education in the Netherlands including all students aged 12–16. The nationwide implementation of W12-16 started in 1990 and envisioned a major change in what and how mathematics was taught and learned. The content was broadened from algebra and geometry to algebra, geometry and measurement, numeracy, and data processing and statistics. The learning trajectories and the instruction theory were based on the ideas of Realistic Mathematics Education (RME): the primary processes used in the classroom were to be guided re-invention and problem solving. ‘Ensuring usability’ in the title of this chapter refers to the aim of the content being useful and understandable for all students, but also to the involvement of all relevant stakeholders in the implementation project, including teachers, students, parents, editors, curriculum and assessment developers, teacher educators, publishers, media and policy makers. Finally, I reflect on the current state of affairs more than 20 years after the nationwide introduction. The main questions to be asked are: Have the goals been reached? Was the implementation successful?
LINK
Alcohol Use Disorder (AUD) involves uncontrollable drinking despite negative consequences, a challenge amplified in festivals. ARise is a project using Augmented Reality (AR) to prevent AUD by helping festival visitors refuse alcohol and other substances. Based on the first Augmented Reality Exposure Therapy (ARET) for clinical AUD treatment, ARise uses a smartphone app with AR glasses to project virtual humans that tempt visitors to drink alcohol. Users interact in a safe and personalized way with these virtual humans through phone, voice, and gesture interactions. The project gathers festival feedback on user experience, awareness, usability, and potential expansion to other substances.Societal issueHelping treatment of addiction and stimulate social inclusion.Benefit to societyMore people less patients: decrease health cost and increase in inclusion and social happiness.Collaborative partnersNovadic-Kentron, Thalamusa
Alcohol use disorder (AUD) is a pattern of alcohol use that involves having trouble controlling drinking behaviour, even when it causes health issues (addiction) or problems functioning in daily (social and professional) life. Moreover, festivals are a common place where large crowds of festival-goers experience challenges refusing or controlling alcohol and substance use. Studies have shown that interventions at festivals are still very problematic. ARise is the first project that wants to help prevent AUD at festivals using Augmented Reality (AR) as a tool to help people, particular festival visitors, to say no to alcohol (and other substances). ARise is based on the on the first Augmented Reality Exposure Therapy (ARET) in the world that we developed for clinical treatment of AUD. It is an AR smartphone driven application in which (potential) visitors are confronted with virtual humans that will try to seduce the user to accept an alcoholic beverage. These virtual humans are projected in the real physical context (of a festival), using innovative AR glasses. Using intuitive phone, voice and gesture interactions, it allows users to personalize the safe experience by choosing different drinks and virtual humans with different looks and levels of realism. ARET has been successfully developed and tested on (former) AUD patients within a clinical setting. Research with patients and healthcare specialists revealed the wish to further develop ARET as a prevention tool to reach people before being diagnosed with AUD and to extend the application for other substances (smoking and pills). In this project, festival visitors will experience ARise and provide feedback on the following topics: (a) experience, (b) awareness and confidence to refuse alcohol drinks, (c) intention to use ARise, (d) usability & efficiency (the level of realism needed), and (e) ideas on how to extend ARise with new substances.
Augmented Reality (AR) technologie is een vorm van mens-computer interactie waar de natuurlijke visuele waarneming van de mens wordt aangevuld met computer-gegenereerde informatie, zoals virtuele 3D modellen, aanwijzingen en teksten). Dit KIEM onderzoek exploreert de mogelijkheid van AR bij het assembleren van fysieke producten. Deze exploratie betreft: • de complexiteit van het voortraject: het analyseren van assemblageprocessen, het vaststellen van assemblagetaken die ondersteuning behoeven en het specificeren van de aard van de gewenste ondersteuning; • vaststellen van variabelen die bepalend zijn voor de business case van het gebruik van AR; • een verkenning van de technische complexiteit van het ontwikkelen van een AR applicatie, met gebruikmaking van de Microsoft Hololens; • een initiële effectmeting waarin, in het Usability Laboratorium van de HAN, gekeken wordt hoe een operator omgaat met de additionele informatie vanuit AR. Het onderzoek bestaat uit een praktijkstudie waar reeds technologie aanwezig is voor AR (bij Lankhorst BV) en een studie binnen de HAN, gebaseerd op een complexe assemblageproblematiek bij ARA B.V. Resultaten worden gepresenteerd voor een bredere groep MKB assemblagebedrijven. Kennis opgedaan uit bovengenoemde punten, en de gaps in de verkregen kennis, vormen vervolgens de basis van een omvangrijker project. Hierbij wordt gedacht aan een RAAK MKB project.