This exploratory study investigates the rationale behind categorizing algorithmic controls, or algorithmic affordances, in the graphical user interfaces (GUIs) of recommender systems. Seven professionals from industry and academia took part in an open card sorting activity to analyze 45 cards with examples of algorithmic affordances in recommender systems’ GUIs. Their objective was to identify potential design patterns including features on which to base these patterns. Analyzing the group discussions revealed distinct thought processes and defining factors for design patterns that were shared by academic and industry partners. While the discussions were promising, they also demonstrated a varying degree of alignment between industry and academia when it came to labelling the identified categories. Since this workshop is part of the preparation for creating a design pattern library of algorithmic affordances, and since the library aims to be useful for both industry and research partners, further research into design patterns of algorithmic affordances, particularly in terms of labelling and description, is required in order to establish categories that resonate with all relevant parties
LINK
Droop control is used for power management in DC grids. Based on the level of the DC grid voltage, the amount of power regulated to or from the appliance is regulated such, that power management is possible. The Universal 4 Leg is a laboratory setup for studying the functionality of a grid manager for power management. It has four independent outputs that can be regulated with pulse width modulation to control the power flow between the DC grid and for example, a rechargeable battery, solar panel or any passive load like lighting or heating.
Background: During the process of decision-making for long-term care, clients are often dependent on informal support and available information about quality ratings of care services. However, clients do not take ratings into account when considering preferred care, and need assistance to understand their preferences. A tool to elicit preferences for long-term care could be beneficial. Therefore, the aim of this qualitative descriptive study is to understand the user requirements and develop a web-based preference elicitation tool for clients in need of longterm care. Methods: We applied a user-centred design in which end-users influence the development of the tool. The included end-users were clients, relatives, and healthcare professionals. Data collection took place between November 2017 and March 2018 by means of meetings with the development team consisting of four users, walkthrough interviews with 21 individual users, video-audio recordings, field notes, and observations during the use of the tool. Data were collected during three phases of iteration: Look and feel, Navigation, and Content. A deductive and inductive content analysis approach was used for data analysis. Results: The layout was considered accessible and easy during the Look and feel phase, and users asked for neutral images. Users found navigation easy, and expressed the need for concise and shorter text blocks. Users reached consensus about the categories of preferences, wished to adjust the content with propositions about well-being, and discussed linguistic difficulties. Conclusion: By incorporating the requirements of end-users, the user-centred design proved to be useful in progressing from the prototype to the finalized tool ‘What matters to me’. This tool may assist the elicitation of client’s preferences in their search for long-term care.
Aiming for a more sustainable future, biobased materials with improved performance are required. For biobased vinyl polymers, enhancing performance can be achieved by nanostructuring the material, i.e. through the use of well-defined (multi-)block, gradient, graft, comb, etc., copolymer made by controlled radical polymerization (CRP). Dispoltec has developed a new generation of alkoxyamines, which suppress termination and display enhanced end group stability compared to state-of-art CRP. Hence, these alkoxyamines are particularly suited to provide access to such biobased nanostructured materials. In order to produce alkoxyamines in a more environmentally benign and efficient manner, a photo-chemical step is beneficial for the final stage in their synthesis. Photo-flow chemistry as a process intensification technology is proposed, as flow chemistry inherently leads to more efficient reactions. In particular, photo-flow offers the benefit of significantly enhancing reactant concentrations and reducing batch times due to highly improved illumination. The aim of this project is to demonstrate at lab scale the feasibility of producing the new generation of alkoxy-amines via a photo-flow process under industrially relevant conditions regarding concentration, duration and efficiency. To this end, Zuyd University of Applied Sciences (Zuyd), CHemelot Innovation and Learning Labs (CHILL) and Dispoltec BV want to enter into a collaboration by combining the expertise of Dispoltec on alkoxyamines for CRP with those of Zuyd and CHILL on microreactor technology and flow chemistry. Improved access to these alkoxyamines is industrially relevant for initiator manufacturers, as well as producers of biobased vinyl polymers and end-users aiming to enhance performance through nanostructuring biobased materials. In addition, access in this manner is a clear demonstration for the high industrial potential of photo-flow chemistry as sustainable manufacturing tool. Further to that, students and professionals working together at CHILL will be trained in this emerging, industrially relevant and sustainable processing tool.
There is increasing interest for the use of Virtual Reality (VR) in the field of sustainable transportation and urban development. Even though much has been said about the opportunities of using VR technology to enhance design and involve stakeholders in the process, implementations of VR technology are still limited. To bridge this gap, the urban intelligence team of NHTV Breda University of Applied Sciences developed CycleSPEX, a Virtual Reality (VR) simulator for cycling. CycleSpex enables researchers, planners and policy makers to shape a variety of scenarios around knowledge- and design questions and test their impact on users experiences and behaviour, in this case (potential) cyclists. The impact of infrastructure enhancements as well as changes in the surrounding built environment can be tested, analysed an evaluated. The main advantage for planners and policy makers is that the VR environment enables them to test scenarios ex-ante in a safe and controlled setting.“The key to a smart, healthy and safe urban environment lies in engaging mobility. Healthy cities are often characterized by high quality facilities for the active modes. But what contributes to a pleasant cycling experience? CycleSPEX helps us to understand the relations between cyclists on the move and (designed) urban environments”
Road freight transport contributes to 75% of the global logistics CO2 emissions. Various European initiatives are calling for a drastic cut-down of CO2 emissions in this sector [1]. This requires advanced and very expensive technological innovations; i.e. re-design of vehicle units, hybridization of powertrains and autonomous vehicle technology. One particular innovation that aims to solve this problem is multi-articulated vehicles (road-trains). They have a smaller footprint and better efficiency of transport than traditional transport vehicles like trucks. In line with the missions for Energy Transition and Sustainability [2], road-trains can have zero-emission powertrains leading to clean and sustainable urban mobility of people and goods. However, multiple articulations in a vehicle pose a problem of reversing the vehicle. Since it is extremely difficult to predict the sideways movement of the vehicle combination while reversing, no driver can master this process. This is also the problem faced by the drivers of TRENS Solar Train’s vehicle, which is a multi-articulated modular electric road vehicle. It can be used for transporting cargo as well as passengers in tight environments, making it suitable for operation in urban areas. This project aims to develop a reverse assist system to help drivers reverse multi-articulated vehicles like the TRENS Solar Train, enabling them to maneuver backward when the need arises in its operations, safely and predictably. This will subsequently provide multi-articulated vehicle users with a sustainable and economically viable option for the transport of cargo and passengers with unrestricted maneuverability resulting in better application and adding to the innovation in sustainable road transport.